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Abstract

In the homogeneous case of one type of objects, we prove the existence of an additive scale unique up to a positive scaling
transformation without transitivity of indifference and with a property of homothetic invariance weaker than monotonicity. The
representation, which is a particular case of a semiorder representation, reveals a unique positive factor o<1 that biases extensive
structures and explains departures from these standard axioms of extensive measurement (¢ = 1). We interpret o as characterizing
the qualitative influence of the underlying measurement process and we show that it induces a proportional indifference threshold.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Following Krantz, Luce, Suppes, and Tversky (1971,
chap. 3), theories of extensive measurement can be
formulated as a collection of axioms about a nonempty
ordering > on a set 4 (of objects x,y,z...€4) and a
binary (commutative, associative) operation o on A that
permit the construction of a scale ¢ : A—>R+ verifying

(i) x>y<=o(x)>0),

(i) @(xop) = @(x) + ().

For the representational theory of measurement, ¢ is a
ratio-scale and is unique up to a positive scaling
transformation.

A typical interpretation in physics is the measurement
of mass using an equal-arm balance. The statement
“x>y” is interpreted as the empirical observation that
the balance tilts in favor of object x and “xoy” is
interpreted as the positioning of objects x and y in the
same pan of the balance. The scale ¢ measures the mass
of the objects. Another classical application in the
physical sciences is, for instance, the measurement of
length (Krantz et al., 1971, Section 3.6).
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Two groups of axioms are crucial to these
theories. Firstly, the ordering is assumed to be
asymmetric: x>y = yy¥x, and negatively transitive:
(x#y and y¥z) = xz. Note that these two properties
imply that the ordering 1is also transitive:
(x>y and y>z) = x>z. Secondly, the combination
of the ordering and the operation is assumed to
verify a form of consistency called monotonicity:
x>y<>(xoz>yoz for all zed). Note that this
property, joint to the asymmetry of the ordering, imply
that the operation is >-regular: (x>y or y>x) =
(zox#zoy for all ze A). If ¢ is a real-valued function
on A verifying (i) and (ii), then all these axioms
necessarily hold (because they hold for the triple
(R, >,+>).

In this paper, we restrict ourselves to homogeneous
structures, i.e. structures for which mx = ny for some
(m,n)eN5 ¢ x N+, where nx is defined inductively by
Ix = x and (n + 1)x = nx o x. Note that this assumption
(in this form or in the form in Section 3) is verified in the
case of unidimensional objects that are all positively
valued (e.g. masses in the physical sciences, monetary
gains in the social sciences). Assuming asymmetry and
transitivity (i.e. without assuming negative transitivity)
and replacing monotonicity by a weaker property
(homothetic invariance: x>y <>nx>ny for all neN.),
we show there exists a scale ¢ that verifies (i) and a
two-way representation (i') more general than (i). More



10 M. Le Menestrel, B. Lemaire | Journal of Mathematical Psychology 48 (2004) 9-14

precisely, we prove there exists a unique positive number
o<1 such that

(i) x>yeap(x)>e(y).

An interpretation is the measurement of mass using a
balance that is not necessarily equally armed. The
statement x>y’ is interpreted as the empirical
observation that the balance tilts towards x indepen-
dently of the arm on which x is positioned. The
interpretations of “xo3)” and of the scale ¢ do not
change and « characterizes the ratio of the length of the
two arms. When o equals 1, the balance is equally armed
and this approach reduces to classical extensive mea-
surement of mass.

An interpretation in social sciences is as follows.
Consider the objects to be positive amounts of money.
The statement “x>>y” is interpreted as “x is strictly
preferred to p”, the statement “(xyy and y¥x)” is
interpreted as “x is indifferent to y” and “xoy” is
interpreted as the sum of amounts x and y. Interpreting
“rational behavior” as consistency with the set of
axioms, we can, for instance, model a rational individual
being indifferent between €100 and €101, and between
€101 and €102, while strictly preferring €102 to €100. In
that case, we would have {§7>0>1{3. Moreover, such a
rational individual would not be indifferent between €1
and €2. In this manner, this model allows us to interpret
an observed lack of discrimination (intransitive indif-
ference) and a diminishing marginal utility (violation of
monotonicity). The function ¢ extensively measures the
“value” of objects and o characterizes a ““bias” that
influences rational choice beyond the maximization of
@. When o< 1, the individual strictly prefers x to y if and
only if the value of x is greater than the value of y
multiplied by a positive factor (see Fig. 1).

Note that the intuition behind these two interpreta-
tions is somehow similar. The idea is to model the
empirical or qualitative influence of the measurement
process, i.e. the manner by which objects are treated by
the measuring device or by the individual, through a
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Fig. 1. A proportional bias.

bias that combines multiplicatively with the measure-
ment of objects.

In psychology, the view that insensitivity and/or
inconsistency in the measurement of objects is not
necessarily a nuisance but can be a source of informa-
tion about the underlying processes dates back at least
from Fechner in 1860 (see Suppes, Krantz, Luce, &
Tversky, 1989, chap. 16). This view is related to the idea
of a threshold of discrimination or just noticeable
stimulus difference in psychological judgment. An
important case is Weber’s law of 1834 which asserts
that the just noticeable difference maintains a constant
ratio with respect to the intensity of the comparison
stimulus. Rewriting property (i') as x>y<o(x)>
(p()/)—&-%“qu(y), one verifies that the just noticeable
difference A,(y) =>%¢p(y) maintains a constant ratio
¢ =1=% with respect to ¢(y). Weber had measured this
ratio to be around % when individuals measure mass
without the help of a balance, which would mean o
to be around % in that case. In this manner, biased
extensive measurement models a proportional percep-
tual threshold.

Insensitivity in the measurement process has been
notably approached through the theory of interval
orders and semiorders (Luce, 1956; Fishburn, 1985;
and also Pirlot & Vincke, 1997). Interval orders are sets
endowed with an ordering that is irreflexive: x % x, and
for which (a>x,b>y) = (a>y or b>x). Fishburn
(1973) provides necessary and sufficient conditions
for interval orders to be represented by two real-
valued functions ¢ and  with ¢@>=y such that
x>y<(x)>@(y). Hence, the structures represented
in the present paper are interval orders with (x) =
ap(x) (note that they are also semiorders because they
verify the supplementary property (a>b,b>c) =
(a>x or x>c)). Instead of reflecting the insensitivity
by an interval, biased extensive measurement provides
for a precise measurement of the objects and of the
insensitivity threshold.

In the rest of the paper, Section 2 presents the main
mathematical result, Section 3 provides for a slight
generalization and Section 4 concludes.

2. A homogeneous, hence denumerable, setting

We start with three primitives: a nonempty set 4, a
nonempty binary relation > on A4, and a closed binary
operation - on 4. We write x ~ y if and only if (x 3 y and
y#x), and x =y if and only if (x>y or x~y). We note
N the set of positive integers, Q¢ the set of positive
rational numbers and R., the set of positive real
numbers.

Definition 1. Let 4 be a nonempty set, > a nonempty
binary relation on 4, and - a closed binary operation on
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A. The triple (A4, >,o) is called a partially ordered
homothetic structure if the following five axioms are
satisfied for all x,y,ze 4 :

1. Strict  partial ~ order: x>y = y¥x;(x>y and
y>z)= x>z

2. Commutativity; associativity: xoy = yox;(xoy)oz =
xo(yoz).

3. Positivity: x>y = Xoz>).

4. Homothetic invariance: x>y<>(nx>ny for all
neNs), where nx is defined inductively by Ix = x
and (n+ 1)x = nxox.

5. Archimedean: 1f x>y, then there exists neN.( such
that nx>(n+ 1)y.

A nonempty set 4 endowed with a closed
associative and commutative binary operation o is
called a commutative semigroup. A commutative
semigroup A is in particular a N -set : A#(, and
for all xed and m,neN.(, we have lx =x and
m(nx) = (mn)x.

A N ¢-set 4 is said to be homogeneous if it satisfies
the following condition, for all x, ye 4:

6. Homogeneity: mx = ny for some (m,n)eN5 ¢ x N .

A commutative semigroup <A, o » (respectively, a
N o-set 4) is said to be regular (resp. homothetic-
regular) if for all xe A, the map A— A, y+>xoy (resp.
the map N.g— A4, m—mx) is injective. A N (-set A
endowed with a nonempty binary relation > is said to
be homothetic- > -regular if for all x,yeA, we have
(x>y or y>x)= (nx#ny for all neN.). If
(A, >,o» is a partially ordered homothetic structure,
then (by homothetic invariance and asymmetry), A4 is
homothetic- > -regular. Clearly, the four notions of
regularity we have introduced in this paper satisfy the
following implications:

regularity = > -regularity = homothetic- > -regularity
and
regularity = homothetic-regularity

= homothetic- > -regularity.

Lemma 1. Let (A, >, o) be a partially ordered homo-
thetic structure. If { A, >,°) is homogeneous, then it is
homothetic-regular and denumerable.

Proof. Since > is not empty, there exist x,ye A4 such
that x>y (in particular, we have |A4]|>2). Let z,z/€ A4,
and choose (m,n), (m',n')eN-¢ x N such that mx =
nz and m'y = n'z’ (homogeneity). By homothetic invar-
iance, we have m'mx>mm'y, i.e. pz>>qz with p =m'n
and g =mn'. Take z=Z, and suppose there exists
(a,b)eN~o x N g such that a>b and az = bz. Then we
have (b + k(a — b))z = bz for all keN.(, hence m" (b +
k(a— b))z =m"bz for all (m" k)eN.y x N5 (. Taking

m" = ¢, we can choose k big enough so that ¢(b + k(a —
b))>pb. Since pbz>qgbz (homothetic invariance), by
positivity we obtain ¢(b + k(a — b))z >qbz, which is
impossible. This implies the homothetic-regularity of A.
In particular, 4 is an infinite set. Since A4 is homo-
geneous and homothetic-regular, for all x, ye 4, the set

o m,neN>0,mx:ny} is reduced to exactly one
element, say ¢.,€@.o. For all xed, the map
A—-Q.g,y—qy, is injective. Hence A4 is denumer-
able. O

We now present the main result of this paper.

Theorem 1. Let {A,o) be a commutative semigroup,
endowed with a nonempty binary relation >. Suppose A
is homogeneous. Then the following two conditions are
equivalent:

(1) There exist a function ¢ : A—>R~y and a number
o€]0, 1] such that, for all x,ye A, we have
(i) x>yeoap(x)>e(),

(i) @(xoy) = @(x)+o(y).

(2) The triple {A,> o> is a partially ordered homo-
thetic structure.

Moreover, if {A,> o) is a partially ordered homo-
thetic structure, then the pair (¢, o) of (1) is unique up to
replacing ¢ by yo for y>0; ¢ is injective; ¢ can be chosen
with values in Q; and o€ Qs if and only if there exist
x,y€ A such that op(x) = ¢(p).

Proof. Implication (1) = (2) is easy to prove, and left
to the reader. For xe 4, we define the subsets of Q.

2, = {% smx 2z nx,I(m,n)eN. g x N>0},

S

= {% :mx >nx,(m,n)eNs o x N>0}.
By homogeneity and homothetic invariance, for all
x,yeA, we have 2, = 2, and 2, = #,. So we can drop
the index x in the notation 2, and #,. By Definition 1,
2 is not empty, and by asymmetry, we have le2.
For a nonempty subset 2 cR~, let 7' = {x~!, xeZ}.
We have Q.9=202'=2"'02 and 2n2' =
27'"n? = .

By positivity and homothetic invariance, we have
ge2=0s,c2and ge? = QO ,c2.

We define r = infg 2 and s = infr 2.

Because 1€ 2, we have 0<r< 1. Because of positivity,
we have s> 1.

If r =0, then for all (m,n)eN-( x N+, there exists
(m',n')eNsg x N+ such that (m',n)e2 and Z<2
Hence “e2.Therefore # = (&, contradiction. Hence
0<r<1. The same argument implies that Q. , <= 2.
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Suppose re@\2. Take (m,n)eN-y x N+ such that
r="Since r¢ 2, we have nx>mx and thus (archime-
dean axiom) pnx > (p + 1)mx for some peN. . There-
fore @rqﬁﬂ which contradicts Q- ,< 2. Therefore,
reQ=rel.

Finally, we have 2=Q,, and also 2Z = Q..
Hence, s = 1.

Let xe A, and denote by fy : A—>Q-.( the function
Yy ¢y, defined in the proof of Lemma 1. Let y,)' € 4.
We write mx=ny and wm'x=n'y for some
(m,n),(m',n")eN~g x N5g.  Since  (W'm+nm')x =
ni'(ye)'), we have gq,,.,= % =0+ ’,’1—’,', ie.

Sx(yey') =f:(y) +/x()). Moreover,

/ / /v / / n Y nm
y>y enny>nny <Snmx>nmx<s ,65’@—/>s
nm nm

and

n'm !

m m
%>S©;>S7©fo(ﬂ >f ().

So we have proved that the pair (¢, o) = (fy, r) verifies
conditions (i') and (ii) of Theorem 1. By construction ¢
is Q< ¢-valued.

Let f': A—>R.( be a function such that f’(yoz) =
f'(y) +f'(z) for all y,ze A. Let ye 4, and write mx = ny
for some (m,n)eNso x N5(. Then we have mf’(x) =
f(mx) = f'(ny) =nf'(y), ie. f'(y)=7pf(y) with y=
f'(x). Then ¢ is unique up to a positive scaling
transformation. By homothetic invariance, this implies
the uniqueness of «: suppose there exists €10, 1] with
p#a, such that x>y< fo(x)>e(y). We can assume
that a<f. Let y,zed such that y>z. There exists
(m,n)eN- ¢ x N5 such that f>2 @20{. So we have
Po(nz)>@(my) and ap(nz) = @(my), that is nz >my and
nz ¥ my, contradiction. Let us prove that ¢ is injective:
let x, y € A such that ¢(x) = ¢(»). By homogeneity, there
exist m,neN o such that mx = ny. From condition (ii),
we have mo(x) = ne(y), which implies m = n; hence
x =y by homothetic-regularity (Lemma 1). The last
assertion of the theorem follows directly from the
definition of f,,. [

Corollary 1. Let <{A,>,o) be a partially ordered
homothetic structure. If A is homogeneous, then the
semigroup { A, is regular.

Proof. Let (¢ : A—>R.¢,0€]0,1]) be a pair verifying
conditions (i) and (ii) of (1). Since ¢ is injective, the
regularity of {A4,<) is implied by condition (ii). O

Remark 1. In Theorem 1, implication (1) = (2) is true
without assuming A4 is homogeneous. Moreover, let
{(A,o>» be a commutative semigroup, and > be a
nonempty binary relation on A4. If the triple (A4, >,
verifies (1), then > is a semiorder.

Remark 2. If o =1, negative transitivity and mono-
tonicity hold and the triple (A4, >, is a closed positive
extensive structure (Krantz et al., 1970, p. 73, Defini-
tion). So in the homogeneous case, we recover the
theory of extensive measurement where (i) and (ii) are
satisfied.

3. A nondenumerable generalization

Retaining the algebraic approach, we now introduce a
slight modification of the setting which allows us to treat
a nondenumerable (but homogeneous in some sense) set
of objects or stimuli. This case would cover, for instance,
a set 4 of objects for which we would have ¢(x) =1
and ¢(y) =7 for some x,yeAd and some irrational
number 7.

Let RcR~( be a subset containing 1 such that for all
A, ue R, wehave A+ peR, JueR and A>u = 12— pueR.
Since 1 € R, we have N. < R. A nonempty set A4 is called
a R-set if it is endowed with a closed operation R x
A—A,(4,x)—A-x such that for all xe4 and A, ueR,
we have 1-x=x and - (ux) = (A4u) - x. A R-set 4 is
said to be R-regular if for all xeA, the map
R— A,/ /- x is injective.

Definition 2. Let (A,-> be a R-set, and > a nonempty
binary relation on A4. The triple {4, >,-) is called a
partially ordered homotheticR-set if the following four
axioms are satisfied, for all x,ye 4:

1. Strict partial order (Definition 1, Axiom 1).

2. R-positivity: x>y = (4-x>pu -y for all 1, ue R such
that > p).

3. R-homothetic invariance: x>y <>(1- x> 4y for all
AER).

4. R-Archimedean: If x >y, then there exist A, u€ R with
A<u, such that - x>pu-y.

A R-set A is said to be R-homogeneous if it satisfies

the following condition, for all x,y e 4:

5. R-homogeneity: 1-x = u -y for some (4, u)eR x R.

Let F(R)=R- be the subset defined by F(R) = {7 :
J,ueR}. Since N.o<R we have the inclusion
Q- F(R).

Lemma 2. Let {A, >,-)> be a partially ordered homo-
thetic R-set. If A is R-homogeneous, then it is R-regular.

Proof. Assume A4 is R-homogeneous, and suppose there
exist zeA4 and (a,b)eR x R such that a>b and a-z =
b-z. Let B={m'z:m'eN.g}<=4, and let o be the
closed binary operation on B defined by (m' -z)o (1 -
z)=(m +n') -z (m' n"eN.y). Then, {(B,>) is a com-
mutative semigroup, and we have mz =m -z (meN.y).
Since > is not empty, by R-homogeneity and
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R-homothetic invariance, there exist 4, ue R such that
A-z>pu - z. By R-homogeneity and R-positivity, we have
A>pu. Let (m,n)eN.o x N.¢ such that 2>%>1. By
R-positivity, we have (mu)l-z>(ni)p-z, hence
(R-homogeneity) mz>nz. In particular, > induces by
restriction a nonempty binary relation on B.

For peN.y, by N.¢-positivity, we have (m+ p)
mz > (mn)z, thus (homothetic invariance) mz o pz >nz.
Now let A/, i/ e R with /' </, such that A’ -mz>y' - nz
(R Archimedean). There exists peN>0 such that
4 ﬂ’rl < 1. By R-positivity, we have pu’ - (2 - mz) > (p +
1)/1’” (¢ - nz), which implies (R-homothetic invariance)
pmz>(p+ 1)nz. So we have proved that the triple
{B, >,o) is a partially ordered homothetic structure
(Definition 1). From Theorem 1, there exists a (unique)
o€ ]0,1], such that for all m',n”eN.y, we have
m'z>=n'z<am' >n.

Let keN ~o such that (9)* >o~!. Sincea-z =b -z, we
have a-z=>b"z Let (p,q)eN-¢x Ny such that
@F >8>q7!. Since ap>g¢, we have pz>»gz. By R-
homogenelty and R-positivity, we obtain af - z>>b* - z;
contradiction. Hence 4 is R-regular. [

Theorem 2. Let (A, -> be a R-set, endowed with a
nonempty binary relation >. Suppose A is homogeneous.
Then the two following conditions are equivalent:

(1) There exist a function ¢ : A—>R<y and a number
0€]0, 1] such that, for all x,ye A and A€ R, we have

(i) x>y<eap(x)>e(y),
(i) @(Z-x) = io(x).

(2) The triple (A, >,-> is a partially ordered homo-
thetic R-set.

Moreover, if (A, >,-> is a partially ordered homo-
thetic R-set, then the pair (@,o) of (1) is unique up to
replacing ¢ by yo for y>0; @ is injective; ¢ can be chosen
with values in F(R); and o.€ F(R) if and only if there exist
x,y€A such that ap(x) = ¢(»).

Proof. Roughly speaking, it suffices to replace N-( by
R and Q. by F(R) in the proof of Theorem 1. For
x€ A, we define the (nonempty) subsets of F(R)

)L
Qx = {}xz:uxvzl(/lmu)ER X R}’
U

Py = {£:i~x>,u~x73(l,u)eR><R}.
u

By R-homogeneity and R-homothetic invariance, we
can drop the index x in the notation 2, and #,. We
have F(R)=202'=2"1'02 and 20n27'=
27'n2 = . By R-positivity and R-homothetic invar-
iance, we have ¢e2= F(R),,=2 and ¢e? =
F(R),,=2. We define s=infr? and r=infg 2.

Because 1€2, we have 0<r<1, and because > is
nonempty, we have r>0 and F(R)_,c2. This last
inclusion, joint to the R-Archimedean axiom, implies
that if re F(R), then re 2. So we have 2 = F(R).,,? =
F(R)_, . and s =r"".

By R-regularity, for all x,y€ A, there exists a unique
gxy€F(R) such that {— A LER A+ x_y v} ={qx,}s
and for all 4, ue R, we Have Qoxqry = 5qxy. Let xe 4. We
define a function f,:4 - F(R) by fi(y ) = (.. As in the
proof of Theorem 1, we verify that the pair (¢,a) =
(fx,r) verifies the conditions (i') of (1); and condition
(ii") is satisfied by construction. All the remaining
assertions of Theorem 2 are obtained as in the proof
of Theorem 1. [

Corollary 2. Let {A,>,-)> be a partially ordered
homothetic N o-set. Suppose A is homogeneous. Then
there exists a unique closed binary operation o on A
extending the structure of N s -set, which makes the triple
(A, > o) a partially ordered homothetic structure.

Proof. Let (¢ : A—>R.¢,0€]0,1]) be a pair verifying
conditions (i) and (ii’) of (1) in Theorem 2. Since ¢ is
injective, we can define a closed binary operation - on A
by xoy = ¢~ (p(x) + @(»)). By construction, {4, is
a commutative semigroup, mx =m-x (xe A,meNy),
and ¢ satisfies the condition (ii) of (1) in Theorem 1.
Hence by Theorem 1, the triple {4, >,<) is a partially
ordered homothetic structure. Now let xeA. For
»,y €A, there exist (m,n)eN.ox N5( and (m’,n’)e
N.o x Nsg such that my=nx and my =n'x; so
we have o(y+)') = oo (mm’ (y V)= ,,m/qo(anr
mn')x) = (L +)p(x), that is yoy = (L+1 )x From
this and the uniqueness property in Theorem 1, we
obtain the uniqueness property in the corollary. D

Remark 3. In Theorem 2, implication (1) = (2) is true
even if 4 is not R-homogeneous. On the other hand, the
proof of Lemma 2 implies the following reciprocal
assertion of Corollary 2: let (A4, >,-)> be a partially
ordered homothetic structure. If 4 is homogeneous,
then the triple <{A4,>,-)> defined by m-x=mx
(meN<y), is a partially ordered homothetic N o-set.

Let us finish this section by some remarks. The
Corollary 2 says in particular that Theorem 2 is stronger
than Theorem 1, and can be viewed as a mathematical
generalization of it. But this is not the principal
motivation of this section: Theorem 1 is stated in the
classical setting of extensive measurement, while Theo-
rem 2 stresses the underlying homothetic structure.
Replacing condition (ii) by condition (ii'), we would like
to show how the semigroup structure is secondary with
respect to the N, g-structure (Corollary 2). In fact, this is
the key-point in the generalization of our results to
nonhomogeneous structures: actually, we are able to
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prove a version of Theorem 2 for nonhomogeneous 4,
which “contains” Theorem 1 as a particular case.
Details will appear in a future work.

4. Conclusion

In this paper, we have axiomatized a class of algebraic
structures {4, >,o» (resp. {4, >,-») for which there
exist a ratio scale ¢ and a unique positive factor a<<1
such that x>y<oap(x)>@(y) and ¢(xey) = ¢(x) +
@(y) (resp. ¢(4-x) = Ap(x)). The factor « is said to
“bias” the extensive measurement of the objects of the
set 4 and we have called such “twisted” representations:
“biased extensive measurement”. The results are
obtained using a structural assumption called ‘“homo-
geneity”’ that covers, with its variant R-homogeneity, the
case of unidimensional objects that are all positively
valued.

This approach maintains a precise measurement of
the objects while reflecting a form of insensitivity (the
symmetric part of the ordering is transitive if and only if
o = 1) and a form of inconsistency (monotonicity holds
similarly) in the measurement process. Hence, the bias o
can be said to characterize a form of qualitative or
procedural error. An example in the physical sciences
and an example in the social sciences have been
illustrating the main result.

Besides generalizing the result for nonhomogeneous
structures, future developments shall link this approach

with probabilities and with the notions of procedural
invariance and procedural utility, which were the initial
motivation of this work (Le Menestrel & Van Wassen-
hove, 2001) but shall be given more specific formulation
and discussion.
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