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Abstract

In the homogeneous case of one type of objects, we prove the existence of an additive scale unique up to a positive scaling

transformation without transitivity of indifference and with a property of homothetic invariance weaker than monotonicity. The

representation, which is a particular case of a semiorder representation, reveals a unique positive factor ap1 that biases extensive

structures and explains departures from these standard axioms of extensive measurement ða ¼ 1Þ: We interpret a as characterizing

the qualitative influence of the underlying measurement process and we show that it induces a proportional indifference threshold.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Following Krantz, Luce, Suppes, and Tversky (1971,
chap. 3), theories of extensive measurement can be
formulated as a collection of axioms about a nonempty
ordering g on a set A (of objects x; y; zyAAÞ and a
binary (commutative, associative) operation 3 on A that
permit the construction of a scale j : A-R40 verifying

ðiÞ xgy3jðxÞ4jðyÞ;

ðiiÞ jðx3yÞ ¼ jðxÞ þ jðyÞ:

For the representational theory of measurement, j is a
ratio-scale and is unique up to a positive scaling
transformation.

A typical interpretation in physics is the measurement
of mass using an equal-arm balance. The statement
‘‘xgy’’ is interpreted as the empirical observation that
the balance tilts in favor of object x and ‘‘x 3 y’’ is
interpreted as the positioning of objects x and y in the
same pan of the balance. The scale j measures the mass
of the objects. Another classical application in the
physical sciences is, for instance, the measurement of
length (Krantz et al., 1971, Section 3.6).
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Two groups of axioms are crucial to these
theories. Firstly, the ordering is assumed to be
asymmetric: xgy ) y-x; and negatively transitive:
ðx-y and y-zÞ ) x-z:Note that these two properties
imply that the ordering is also transitive:
ðxgy and ygzÞ ) xgz: Secondly, the combination
of the ordering and the operation is assumed to
verify a form of consistency called monotonicity:
xgy3ðx 3 zgy 3 z for all zAAÞ: Note that this
property, joint to the asymmetry of the ordering, imply
that the operation is g-regular: ðxgy or ygxÞ )
ðz 3 xaz 3 y for all zAAÞ: If j is a real-valued function
on A verifying (i) and (ii), then all these axioms
necessarily hold (because they hold for the triple
/R;4;þSÞ:

In this paper, we restrict ourselves to homogeneous

structures, i.e. structures for which mx ¼ ny for some
ðm; nÞAN40 �N40; where nx is defined inductively by
1x ¼ x and ðn þ 1Þx ¼ nx 3 x: Note that this assumption
(in this form or in the form in Section 3) is verified in the
case of unidimensional objects that are all positively
valued (e.g. masses in the physical sciences, monetary
gains in the social sciences). Assuming asymmetry and
transitivity (i.e. without assuming negative transitivity)
and replacing monotonicity by a weaker property
(homothetic invariance: xgy3nxgny for all nAN40Þ;
we show there exists a scale j that verifies (ii) and a
two-way representation ði0Þ more general than (i). More
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precisely, we prove there exists a unique positive number
ap1 such that

ði0Þ xgy3ajðxÞ4jðyÞ:

An interpretation is the measurement of mass using a
balance that is not necessarily equally armed. The
statement ‘‘xgy’’ is interpreted as the empirical
observation that the balance tilts towards x indepen-
dently of the arm on which x is positioned. The
interpretations of ‘‘x 3 y’’ and of the scale j do not
change and a characterizes the ratio of the length of the
two arms. When a equals 1, the balance is equally armed
and this approach reduces to classical extensive mea-
surement of mass.

An interpretation in social sciences is as follows.
Consider the objects to be positive amounts of money.
The statement ‘‘xgy’’ is interpreted as ‘‘x is strictly
preferred to y’’; the statement ‘‘ðx-y and y-xÞ’’ is
interpreted as ‘‘x is indifferent to y’’ and ‘‘x 3 y’’ is
interpreted as the sum of amounts x and y: Interpreting
‘‘rational behavior’’ as consistency with the set of
axioms, we can, for instance, model a rational individual
being indifferent between h100 and h101; and between
h101 and h102; while strictly preferring h102 to h100: In
that case, we would have 100

101
Xa4100

102
: Moreover, such a

rational individual would not be indifferent between h1
and h2: In this manner, this model allows us to interpret
an observed lack of discrimination (intransitive indif-
ference) and a diminishing marginal utility (violation of
monotonicity). The function j extensively measures the
‘‘value’’ of objects and a characterizes a ‘‘bias’’ that
influences rational choice beyond the maximization of
j:When ao1; the individual strictly prefers x to y if and
only if the value of x is greater than the value of y

multiplied by a positive factor (see Fig. 1).
Note that the intuition behind these two interpreta-

tions is somehow similar. The idea is to model the
empirical or qualitative influence of the measurement
process, i.e. the manner by which objects are treated by
the measuring device or by the individual, through a
αϕ (x)

ϕ (x)

x

ϕ 

z {w: w
)

z}

Fig. 1. A proportional bias.
bias that combines multiplicatively with the measure-
ment of objects.

In psychology, the view that insensitivity and/or
inconsistency in the measurement of objects is not
necessarily a nuisance but can be a source of informa-
tion about the underlying processes dates back at least
from Fechner in 1860 (see Suppes, Krantz, Luce, &
Tversky, 1989, chap. 16). This view is related to the idea
of a threshold of discrimination or just noticeable
stimulus difference in psychological judgment. An
important case is Weber’s law of 1834 which asserts
that the just noticeable difference maintains a constant
ratio with respect to the intensity of the comparison
stimulus. Rewriting property ði0Þ as xgy3jðxÞ4
jðyÞ þ 1	a

a jðyÞ; one verifies that the just noticeable
difference DjðyÞ ¼ 1	a

a jðyÞ maintains a constant ratio
c ¼ 1	a

a with respect to jðyÞ: Weber had measured this
ratio to be around 1

20
when individuals measure mass

without the help of a balance, which would mean a
to be around 5

6
in that case. In this manner, biased

extensive measurement models a proportional percep-
tual threshold.

Insensitivity in the measurement process has been
notably approached through the theory of interval
orders and semiorders (Luce, 1956; Fishburn, 1985;
and also Pirlot & Vincke, 1997). Interval orders are sets
endowed with an ordering that is irreflexive: x-x; and
for which ðagx; bgyÞ ) ðagy or bgxÞ: Fishburn
(1973) provides necessary and sufficient conditions
for interval orders to be represented by two real-
valued functions j and c with jXc such that
xgy3cðxÞ4jðyÞ: Hence, the structures represented
in the present paper are interval orders with cðxÞ ¼
ajðxÞ (note that they are also semiorders because they
verify the supplementary property ðagb; bgcÞ )
ðagx or xgcÞÞ: Instead of reflecting the insensitivity
by an interval, biased extensive measurement provides
for a precise measurement of the objects and of the
insensitivity threshold.

In the rest of the paper, Section 2 presents the main
mathematical result, Section 3 provides for a slight
generalization and Section 4 concludes.
2. A homogeneous, hence denumerable, setting

We start with three primitives: a nonempty set A; a
nonempty binary relation g on A; and a closed binary
operation 3 on A: We write xBy if and only if ðx-y and
y-xÞ; and xhy if and only if ðxgy or xByÞ: We note
N40 the set of positive integers, Q40 the set of positive
rational numbers and R40 the set of positive real
numbers.

Definition 1. Let A be a nonempty set, g a nonempty
binary relation on A; and 3 a closed binary operation on
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A: The triple /A;g; 3S is called a partially ordered

homothetic structure if the following five axioms are
satisfied for all x; y; zAA :

1. Strict partial order: xgy ) y-x; ðxgy and
ygzÞ ) xgz:

2. Commutativity; associativity: x 3 y ¼ y 3 x; ðx 3 yÞ 3 z ¼
x 3 ðy 3 zÞ:

3. Positivity: xgy ) x 3 zgy:
4. Homothetic invariance: xgy3ðnxgny for all

nAN40Þ; where nx is defined inductively by 1x ¼ x

and ðn þ 1Þx ¼ nx 3 x:
5. Archimedean: If xgy; then there exists nAN40 such

that nxgðn þ 1Þy:
A nonempty set A endowed with a closed

associative and commutative binary operation 3 is
called a commutative semigroup. A commutative
semigroup A is in particular a N40-set : Aa|; and
for all xAA and m; nAN40; we have 1x ¼ x and
mðnxÞ ¼ ðmnÞx:

A N40-set A is said to be homogeneous if it satisfies
the following condition, for all x; yAA:

6. Homogeneity: mx ¼ ny for some ðm; nÞAN40 �N40:

A commutative semigroup /A; 3S (respectively, a
N40-set A) is said to be regular (resp. homothetic-

regular) if for all xAA; the map A-A; y/x 3 y (resp.
the map N40-A;m/mx) is injective. A N40-set A

endowed with a nonempty binary relation g is said to
be homothetic-g-regular if for all x; yAA; we have
ðxgy or ygxÞ ) ðnxany for all nAN40Þ: If
/A;g; 3S is a partially ordered homothetic structure,
then (by homothetic invariance and asymmetry), A is
homothetic-g-regular. Clearly, the four notions of
regularity we have introduced in this paper satisfy the
following implications:

regularity ) g-regularity ) homothetic-g-regularity

and

regularity ) homothetic-regularity

) homothetic-g-regularity:

Lemma 1. Let /A;g; 3S be a partially ordered homo-

thetic structure. If /A;g; 3S is homogeneous, then it is

homothetic-regular and denumerable.

Proof. Since g is not empty, there exist x; yAA such
that xgy (in particular, we have jAjX2). Let z; z0AA;
and choose ðm; nÞ; ðm0; n0ÞAN40 �N40 such that mx ¼
nz and m0y ¼ n0z0 (homogeneity). By homothetic invar-
iance, we have m0mxgmm0y; i.e. pzgqz0 with p ¼ m0n
and q ¼ mn0: Take z ¼ z0; and suppose there exists
ða; bÞAN40 �N40 such that a4b and az ¼ bz: Then we
have ðb þ kða 	 bÞÞz ¼ bz for all kAN40; hence m00ðb þ
kða 	 bÞÞz ¼ m00bz for all ðm00; kÞAN40 �N40: Taking
m00 ¼ q; we can choose k big enough so that qðb þ kða 	
bÞÞ4pb: Since pbzgqbz (homothetic invariance), by
positivity we obtain qðb þ kða 	 bÞÞzgqbz; which is
impossible. This implies the homothetic-regularity of A:
In particular, A is an infinite set. Since A is homo-
geneous and homothetic-regular, for all x; yAA; the set

m
n
: m; nAN40;mx ¼ ny

� �
is reduced to exactly one

element, say qx;yAQ40: For all xAA; the map
A-Q40; y/qx;y is injective: Hence A is denumer-
able. &

We now present the main result of this paper.

Theorem 1. Let /A; 3S be a commutative semigroup,

endowed with a nonempty binary relation g: Suppose A

is homogeneous. Then the following two conditions are

equivalent:
(1)
 There exist a function j : A-R40 and a number

aA�0; 1� such that, for all x; yAA; we have

ðiÞ0 xgy3ajðxÞ4jðyÞ;

ðiiÞ jðx 3 yÞ ¼ jðxÞ þ jðyÞ:
(2)
 The triple /A;g; 3S is a partially ordered homo-

thetic structure.
Moreover, if /A;g; 3S is a partially ordered homo-

thetic structure, then the pair ðj; aÞ of (1) is unique up to

replacing j by gj for g40;j is injective; j can be chosen

with values in Q40; and aAQ40 if and only if there exist

x; yAA such that ajðxÞ ¼ jðyÞ:

Proof. Implication ð1Þ ) ð2Þ is easy to prove, and left
to the reader. For xAA; we define the subsets of Q40

Qx ¼ m

n
: mxhnx; (ðm; nÞAN40 �N40

n o
;

Px ¼ m

n
: mxgnx; (ðm; nÞAN40 �N40

n o
:

By homogeneity and homothetic invariance, for all
x; yAA; we have Qx ¼ Qy and Px ¼ Py: So we can drop
the index x in the notation Qx and Px: By Definition 1,
P is not empty, and by asymmetry, we have 1AQ:
For a nonempty subset XCR40; let X

	1 ¼ fx	1; xAXg:
We have Q40 ¼ Q,P	1 ¼ Q	1,P and Q-P	1 ¼
Q	1-P ¼ +:

By positivity and homothetic invariance, we have
qAQ ) QXqCQ and qAP ) QXqCP:

We define r ¼ infR Q and s ¼ infR P:
Because 1AQ; we have 0prp1: Because of positivity,

we have sX1:
If r ¼ 0; then for all ðm; nÞAN40 �N40; there exists

ðm0; n0ÞAN40 �N40 such that ðm0; n0ÞAQ and m0

n0o
m
n
:

Hence m
n
AQ:Therefore P ¼ +; contradiction. Hence

0orp1: The same argument implies that Q4rCQ:
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Suppose rAQ\Q: Take ðm; nÞAN40 �N40 such that
r ¼ m

n
: Since reQ; we have nxgmx and thus (archime-

dean axiom) pnxgðp þ 1Þmx for some pAN40: There-
fore ðpþ1Þ

p
reQ which contradicts Q4rCQ: Therefore,

rAQ ) rAQ:
Finally, we have Q ¼ QXr; and also P ¼ Q41=r:

Hence, s ¼ 1
r
:

Let xAA; and denote by fx : A-Q40 the function
y/qx;y defined in the proof of Lemma 1. Let y; y0AA:
We write mx ¼ ny and m0x ¼ n0y0 for some
ðm; nÞ; ðm0; n0ÞAN40 �N40: Since ðn0m þ nm0Þx ¼
nn0ðy 3 y0Þ; we have qx;y 3 y0 ¼ n0mþnm0

nn0 ¼ m
n
þ m0

n0 ; i.e.
fxðy 3 y0Þ ¼ fxðyÞ þ fxðy0Þ: Moreover,

ygy03n0nygnn0y03n0mxgnm0x3
n0m

nm0AP3
n0m

nm04s

and

n0m

nm04s3
m

n
4s

m0

n03rfxðyÞ4fxðy0Þ:

So we have proved that the pair ðj; aÞ ¼ ðfx; rÞ verifies
conditions ði0Þ and (ii) of Theorem 1. By construction j
is Q40-valued.

Let f 0 : A-R40 be a function such that f 0ðy 3 zÞ ¼
f 0ðyÞ þ f 0ðzÞ for all y; zAA: Let yAA; and write mx ¼ ny

for some ðm; nÞAN40 �N40: Then we have mf 0ðxÞ ¼
f 0ðmxÞ ¼ f 0ðnyÞ ¼ nf 0ðyÞ; i.e. f 0ðyÞ ¼ gfxðyÞ with g ¼
f 0ðxÞ: Then j is unique up to a positive scaling
transformation. By homothetic invariance, this implies
the uniqueness of a: suppose there exists bA�0; 1� with
baa; such that xgy3bjðxÞ4jðyÞ: We can assume
that aob: Let y; zAA such that ygz: There exists
ðm; nÞAN40 �N40 such that b4m

n
jðyÞ
jðzÞXa: So we have

bjðnzÞ4jðmyÞ and ajðnzÞXjðmyÞ; that is nzgmy and
nz-my; contradiction. Let us prove that j is injective:
let x; yAA such that jðxÞ ¼ jðyÞ: By homogeneity, there
exist m; nAN40 such that mx ¼ ny: From condition (ii),
we have mjðxÞ ¼ njðyÞ; which implies m ¼ n; hence
x ¼ y by homothetic-regularity (Lemma 1). The last
assertion of the theorem follows directly from the
definition of fx: &

Corollary 1. Let /A;g; 3S be a partially ordered

homothetic structure. If A is homogeneous, then the

semigroup /A; 3S is regular.

Proof. Let ðj : A-R40; aA�0; 1�Þ be a pair verifying
conditions ði0Þ and (ii) of (1). Since j is injective, the
regularity of /A; 3S is implied by condition (ii). &

Remark 1. In Theorem 1, implication ð1Þ ) ð2Þ is true
without assuming A is homogeneous. Moreover, let
/A; 3S be a commutative semigroup, and g be a
nonempty binary relation on A: If the triple /A;g; 3S
verifies (1), then g is a semiorder.
Remark 2. If a ¼ 1; negative transitivity and mono-
tonicity hold and the triple /A;g; 3S is a closed positive

extensive structure (Krantz et al., 1970, p. 73, Defini-
tion). So in the homogeneous case, we recover the
theory of extensive measurement where (i) and (ii) are
satisfied.

3. A nondenumerable generalization

Retaining the algebraic approach, we now introduce a
slight modification of the setting which allows us to treat
a nondenumerable (but homogeneous in some sense) set
of objects or stimuli. This case would cover, for instance,
a set A of objects for which we would have jðxÞ ¼ 1
and jðyÞ ¼ p for some x; yAA and some irrational
number p:

Let RCR40 be a subset containing 1 such that for all
l; mAR; we have lþ mAR; lmAR; and l4m ) l	 mAR:
Since 1AR; we have N40CR: A nonempty set A is called
a R-set if it is endowed with a closed operation R �
A-A; ðl; xÞ/l � x such that for all xAA and l; mAR;
we have 1 � x ¼ x and l � ðmxÞ ¼ ðlmÞ � x: A R-set A is
said to be R-regular if for all xAA; the map
R-A; l/l � x is injective.

Definition 2. Let /A; �S be a R-set, and g a nonempty
binary relation on A: The triple /A;g; �S is called a
partially ordered homotheticR-set if the following four
axioms are satisfied, for all x; yAA:

1. Strict partial order (Definition 1, Axiom 1).
2. R-positivity: xgy ) ðl � xgm � y for all l; mAR such

that l4mÞ:
3. R-homothetic invariance: xgy3ðl � xgl � y for all

lARÞ:
4. R-Archimedean: If xgy; then there exist l; mAR with

lom; such that l � xgm � y:
A R-set A is said to be R-homogeneous if it satisfies

the following condition, for all x; yAA:
5. R-homogeneity: l � x ¼ m � y for some ðl; mÞAR � R:

l
Let FðRÞCR40 be the subset defined by FðRÞ ¼ fm :
l; mARg: Since N40CR we have the inclusion
Q40CFðRÞ:

Lemma 2. Let /A;g; �S be a partially ordered homo-

thetic R-set. If A is R-homogeneous, then it is R-regular.

Proof. Assume A is R-homogeneous, and suppose there
exist zAA and ða; bÞAR � R such that a4b and a � z ¼
b � z: Let B ¼ fm0z : m0AN40gCA; and let 3 be the
closed binary operation on B defined by ðm0 � zÞ 3 ðn0 �
zÞ ¼ ðm0 þ n0Þ � z ðm0; n0AN40Þ: Then, /B; 3S is a com-
mutative semigroup, and we have mz ¼ m � z ðmAN40Þ:
Since g is not empty, by R-homogeneity and
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R-homothetic invariance, there exist l; mAR such that
l � zgm � z: By R-homogeneity and R-positivity, we have
l4m: Let ðm; nÞAN40 �N40 such that m

n
4l

m41: By
R-positivity, we have ðmmÞl � zgðnlÞm � z; hence
(R-homogeneity) mzgnz: In particular, g induces by
restriction a nonempty binary relation on B:

For pAN40; by N40-positivity, we have ðm þ pÞ
mzgðmnÞz; thus (homothetic invariance) mz 3 pzgnz:
Now let l0; m0AR with l0om0; such that l0 � mzgm0 � nz

(R-Archimedean). There exists pAN40 such that
l0
m0o

p
pþ1

o1: By R-positivity, we have pm0 � ðl0 � mzÞgðp þ
1Þl0 � ðm0 � nzÞ; which implies (R-homothetic invariance)
pmzgðp þ 1Þnz: So we have proved that the triple
/B;g; 3S is a partially ordered homothetic structure
(Definition 1). From Theorem 1, there exists a (unique)
aA �0; 1�; such that for all m0; n0AN40; we have
m0zgn0z3am04n:

Let kAN40 such that ða
b
Þk4a	1: Since a � z ¼ b � z; we

have ak � z ¼ bk � z: Let ðp; qÞAN40 �N40 such that
ða

b
Þk4p

q
4a	1: Since ap4q; we have pzgqz: By R-

homogeneity and R-positivity, we obtain ak � zgbk � z;
contradiction. Hence A is R-regular. &

Theorem 2. Let /A; �S be a R-set, endowed with a

nonempty binary relation g: Suppose A is homogeneous.

Then the two following conditions are equivalent:
(1)
 There exist a function j : A-R40 and a number

aA�0; 1� such that, for all x; yAA and lAR; we have

ðiÞ0 xgy3ajðxÞ4jðyÞ;

ðiiÞ0 jðl � xÞ ¼ ljðxÞ:
(2)
 The triple /A;g; �S is a partially ordered homo-

thetic R-set.
Moreover, if /A;g; �S is a partially ordered homo-

thetic R-set, then the pair ðj; aÞ of (1) is unique up to

replacing j by gj for g40;j is injective; j can be chosen

with values in FðRÞ; and aAFðRÞ if and only if there exist

x; yAA such that ajðxÞ ¼ jðyÞ:

Proof. Roughly speaking, it suffices to replace N40 by
R and Q40 by FðRÞ in the proof of Theorem 1. For
xAA; we define the (nonempty) subsets of FðRÞ

Qx ¼ l
m
: l � xhm � x; (ðl; mÞAR � R

� �
;

Px ¼ l
m
: l � xgm � x; (ðl; mÞAR � R

� �
:

By R-homogeneity and R-homothetic invariance, we
can drop the index x in the notation Qx and Px: We
have FðRÞ ¼ Q,P	1 ¼ Q	1,P and Q-P	1 ¼
Q	1-P ¼ +: By R-positivity and R-homothetic invar-
iance, we have qAQ ) FðRÞ

XqCQ and qAP )
FðRÞ

XqCP: We define s ¼ infR P and r ¼ infR Q:
Because 1AQ; we have 0prp1; and because g is
nonempty, we have r40 and FðRÞ4rCQ: This last
inclusion, joint to the R-Archimedean axiom, implies
that if rAFðRÞ; then rAQ: So we have Q ¼ FðRÞ

Xr;P ¼
FðRÞ4r	1 and s ¼ r	1:

By R-regularity, for all x; yAA; there exists a unique
qx;yAFðRÞ such that fl

m
: l; mAR; l � x ¼ m � yg ¼ fqx;yg;

and for all l; mAR; we have ql�x;m�y ¼ m
lqx;y: Let xAA: We

define a function fx:A-FðRÞ by fxðyÞ ¼ qx;y: As in the
proof of Theorem 1, we verify that the pair ðj; aÞ ¼
ðfx; rÞ verifies the conditions ði0Þ of (1); and condition
ðii0Þ is satisfied by construction. All the remaining
assertions of Theorem 2 are obtained as in the proof
of Theorem 1. &

Corollary 2. Let /A;g; �S be a partially ordered

homothetic N40-set. Suppose A is homogeneous. Then

there exists a unique closed binary operation 3 on A

extending the structure of N40-set, which makes the triple

/A;g; 3S a partially ordered homothetic structure.

Proof. Let ðj : A-R40; aA�0; 1�Þ be a pair verifying
conditions ði0Þ and ðii0Þ of (1) in Theorem 2. Since j is
injective, we can define a closed binary operation 3 on A

by x 3 y ¼ j	1ðjðxÞ þ jðyÞÞ: By construction, /A; 3S is
a commutative semigroup, mx ¼ m � x ðxAA;mAN40Þ;
and j satisfies the condition (ii) of (1) in Theorem 1.
Hence by Theorem 1, the triple /A;g; 3S is a partially
ordered homothetic structure. Now let xAA: For
y; y0AA; there exist ðm; nÞAN40 �N40 and ðm0; n0ÞA
N40 �N40 such that my ¼ nx and my0 ¼ n0x; so
we have jðy þ y0Þ ¼ 1

mm0jðmm0ðy 3 y0ÞÞ ¼ 1
mm0jðm0n þ

mn0ÞxÞ ¼ ðn
m
þ n0

m0ÞjðxÞ; that is y 3 y0 ¼ ðn
m
þ n0

m0Þx: From
this and the uniqueness property in Theorem 1, we
obtain the uniqueness property in the corollary. &

Remark 3. In Theorem 2, implication ð1Þ ) ð2Þ is true
even if A is not R-homogeneous. On the other hand, the
proof of Lemma 2 implies the following reciprocal
assertion of Corollary 2: let /A;g; 3S be a partially
ordered homothetic structure. If A is homogeneous,
then the triple /A;g; �S defined by m � x ¼ mx

(mAN40), is a partially ordered homothetic N40-set.

Let us finish this section by some remarks. The
Corollary 2 says in particular that Theorem 2 is stronger
than Theorem 1, and can be viewed as a mathematical
generalization of it. But this is not the principal
motivation of this section: Theorem 1 is stated in the
classical setting of extensive measurement, while Theo-
rem 2 stresses the underlying homothetic structure.
Replacing condition (ii) by condition ðii0Þ; we would like
to show how the semigroup structure is secondary with
respect to the N40-structure (Corollary 2). In fact, this is
the key-point in the generalization of our results to
nonhomogeneous structures: actually, we are able to
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prove a version of Theorem 2 for nonhomogeneous A;
which ‘‘contains’’ Theorem 1 as a particular case.
Details will appear in a future work.
4. Conclusion

In this paper, we have axiomatized a class of algebraic
structures /A;g; 3S (resp. /A;g; �SÞ for which there
exist a ratio scale j and a unique positive factor ap1
such that xgy3ajðxÞ4jðyÞ and jðx 3 yÞ ¼ jðxÞ þ
jðyÞ (resp. jðl � xÞ ¼ ljðxÞÞ: The factor a is said to
‘‘bias’’ the extensive measurement of the objects of the
set A and we have called such ‘‘twisted’’ representations:
‘‘biased extensive measurement’’. The results are
obtained using a structural assumption called ‘‘homo-
geneity’’ that covers, with its variant R-homogeneity, the
case of unidimensional objects that are all positively
valued.

This approach maintains a precise measurement of
the objects while reflecting a form of insensitivity (the
symmetric part of the ordering is transitive if and only if
a ¼ 1Þ and a form of inconsistency (monotonicity holds
similarly) in the measurement process. Hence, the bias a
can be said to characterize a form of qualitative or
procedural error. An example in the physical sciences
and an example in the social sciences have been
illustrating the main result.

Besides generalizing the result for nonhomogeneous
structures, future developments shall link this approach
with probabilities and with the notions of procedural
invariance and procedural utility, which were the initial
motivation of this work (Le Menestrel & Van Wassen-
hove, 2001) but shall be given more specific formulation
and discussion.
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