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a b s t r a c t

In this paper, we study the binary relations R on a nonempty N∗-set A which are h-
independent and h-positive (cf. the introduction below). They are called homothetic positive
orders. Denote by B the set of intervals of R having the form [r,+∞[ with 0 < r ≤ +∞
or ]q,∞[ with q ∈ Q≥0. It is a Q>0-set endowed with a binary relation > extending the
usual one on R>0 (identified with a subset of B via the map r 7→ [r,+∞[). We first
prove that there exists a unique map ΦR : A × A → B such that (for all x, y ∈ A and
all m, n ∈ N∗) we have Φ(mx, ny) = mn−1 · Φ(x, y) and x R y ⇔ ΦR(x, y) > 1. Then
we give a characterization of the homothetic positive orders R on A such that there exist
two morphisms of N∗-sets u1, u2 : A → B satisfying x R y ⇔ u1(x) > u2(y). They are
called generalized homothetic biorders. Moreover, if we impose some natural conditions on
the sets u1(A) and u2(A), the representation (u1, u2) is ‘‘uniquely’’ determined by R. For a
generalized homothetic biorder R on A, the binary relation R1 on A defined by x R1 y ⇔
ΦR(x, y) > ΦR(y, x) is a generalized homothetic weak order; i.e. there exists a morphism
of N∗-sets u : A → B such that (for all x, y ∈ A) we have x R1 y ⇔ u(x) > u(y). As we
did in [B. Lemaire, M. Le Menestrel, Homothetic interval orders, Discrete Math. 306 (2006)
1669–1683] for homothetic interval orders, we also write ‘‘the’’ representation (u1, u2) of
R in terms of u and a twisting factor.

© 2008 Elsevier B.V. All rights reserved.

This paper proposes a generalization of [13] in which we had studied homothetic interval orders on a nonempty N∗-set
A. Let us recall that such an order R is a nonempty binary relation, h-independent in the sense that x R y ⇔ mx Rmy for
all x, y ∈ A and all m ∈ N∗, and satisfying a series of properties that ensure the existence of two morphisms of N∗-sets
u1, u2 : A→ R>0 such that x R y⇔ u1(x) > u2(y) with u1 ≤ u2. Moreover, the pair (u1, u2) is unique up to multiplication
by a positive scalar. Besides h-independence, the most striking properties of homothetic interval orders are:
– asymmetry: x R y⇒ y (−R) xwhere−Rmeans the negation of R;
– h-positivity: for allm, n ∈ N∗ such thatm > n, we have x R y⇒ mx R ny;
– h-super-Archimedean1: if x R y, then there existsm ∈ N∗ such thatmx R (m+ 1)y.

Note that asymmetry implies
– irreflexivity: x (−R) x.

Of all these properties, this paper first retains only two: h-independence and h-positivity.

I This paper has been announced in [M. Le Menestrel, B. Lemaire, Ratio-scale measurement with intransitivity or incompleteness: The homogeneous
case, Theory Decis. 60 (2006) 207–217; B. Lemaire, M. Le Menestrel, Homothetic interval orders, Discrete Math. 306 (2006) 1669–1683] under the title of
‘‘Homothetic positive orders’’.
∗ Corresponding author.
E-mail addresses: lemaire@iml.univ-mrs.fr (B. Lemaire), marc.lemenestrel@upf.edu (M. Le Menestrel).
1 In [13], we called this property h-Archimedean but the terminology of the present paper is more in line with the literature (see e.g. [6]).

0012-365X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.10.011

Please cite this article in press as: B. Lemaire, M. Le Menestrel, Generalized homothetic biorders, Discrete Mathematics (2008),
doi:10.1016/j.disc.2008.10.011

http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:lemaire@iml.univ-mrs.fr
mailto:marc.lemenestrel@upf.edu
http://dx.doi.org/10.1016/j.disc.2008.10.011


ARTICLE  IN  PRESS
2 B. Lemaire, M. Le Menestrel / Discrete Mathematics ( ) –

LetR(A) be the set of binary relations on A that are h-independent and h-positive. Abandoning the h-super-Archimedean
property naturally leads to enrich the range of the representation: denote by R\ the set of intervals of R having the form
[r,+∞[ or ]r,+∞[ with−∞ < r ≤ +∞, endowed with the order ≤ inverse of the one given by inclusion. We identify
r ∈ R with the closed interval [r,+∞[, and we note r+ the open interval ]r,+∞[. We denote by∞ the empty interval
] + ∞,+∞[. In this manner, the relation ≤ on R\ extends the relation on R, and we denote by > its negation: for two
intervals I , I ′ in R\, we then have I > I ′ ⇔ I ′ 6⊂ I . We also endow R\ with a R>0-set structure extending the one of R (cf.
Section 1). Finally, we define:

B = R>0 ∪ {q+ : q ∈ Q>0} ∪ {0+,∞},
A = R>0 ∪ {0+,∞}.

We have the inclusions A ⊂ B ⊂ R\; and A and B are respectively a sub-R>0-set and a sub-Q>0-set of R\.
Our first result is the following (4.2): for all relation R ∈ R(A), there exists a unique function ΦR : A × A → B satisfying

(for all x, y ∈ A and all m, n ∈ N∗):

(1) ΦR(mx, ny) = m
n · ΦR(x, y);

(2) x R y⇔ ΦR(x, y) > 1.

Conversely, any binary relation R on A such that there exists a function Φ : A × A → B satisfying (1) and (2) belongs to
R(A).
Denote byR′(A) the subset ofR(A) consisting of h-super-Archimedean relations. We verify that for R ∈ R(A), we have

R ∈ R′(A) if and only ifΦR(A× A) ⊂ A.
We then introduce a notion that extends homothetic interval orders: a relation R ∈ R(A) is said to be a generalized

homothetic biorder if there exist twomorphisms ofN∗-sets u1, u2 : A→ R\>0 such that x R y⇔ u1(x) > u2(y); inwhich case
we say that the pair (u1, u2) represents R.We show that if R ∈ R(A) is a generalized homothetic biorder, then the pair (u1, u2)
which represents R is unique up tomultiplication by a positive scalar (6.5). In fact, the correct formulation of this uniqueness
property is slightly more complicated (cf. Section 6), and leads us to distinguish three cases: ΦR(A × A) ⊂ {0+,∞};
ΦR(A × A) ⊂ A r {0+,∞}; and ΦR(A × A) ⊂ B r A. In particular, if R is a h-super-Archimedean generalized homothetic
biorder on A such that ΦR(A × A) 6⊂ {0+,∞}, then there exists a ‘‘unique’’ representation (u1, u2) of R in A, i.e. such that
ui(A) ⊂ A (i = 1, 2).
Before going on, let us consider the three following properties for a binary relation R on A:

– Ferrers: xRy and zRt ⇒ xRt or zRy;
– negative transitivity: x (−R) y (−R) z ⇒ x (−R) z.

Recall that R is called:

– a biorder if it is Ferrers;
– an interval order if is irreflexive and Ferrers;
– a weak order if is asymmetric and negatively transitive.

So we have the implications:

weak order ⇒ interval order ⇒ biorder.

Usually, a biorder R on A is said to be representable if there exist two functions u1, u2 : A→ R>0 such that

x R y⇔ u1(x) > u2(y).

Note that if u1 ≤ u2 (resp. u1 = u2), then R is an interval order (resp. a weak order).
Thus homothetic interval orders are particular cases of representable interval order. And the notion of generalized

homothetic biorder is a twofold extension: firstly we enlarge the space of the representation, in the sense that the two
functions u1 and u2 on A may take their values in R\>0 instead of R>0; secondly we remove the condition u1 ≤ u2. A
generalized homothetic biorder represented by a pair (u1, u2) such that u1 ≤ u2 (resp. u1 = u2) is called a generalized
homothetic interval order (resp. a generalized homothetic weak order).
Let us return to the contents of the paper. We then study the characterization of the subsetR•(A) ⊂ R(A) of generalized

homothetic biorders. Note that in [12], we have studied the case where A is homogeneous (i.e. such that for all x, y ∈ A,
there exist m, n ∈ N∗ such that mx = ny). In that special case, it is easy to show that any positive homothetic order is also
a homothetic biorder, i.e. we have R•(A) = R(A). But this equality is no longer true in general. In Section 9, we identify
a (finite!) set of properties that characterizeR•(A). These properties are in fact compatibility properties between R and its
dual relation R∨ ∈ R(A), defined by

x R∨ y⇔ y (−R) x.

We show that if R ∈ R•(A), then the binary relation R1 on A given by

x R1 y⇔ ΦR(x, y) > ΦR(y, x)
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is a generalized homothetic weak order (11.1). This allows us to extend the representation of a homothetic interval order
introduced in [11,13] to generalized homothetic biorders (11.3): for R ∈ R•(A), there exists a morphism of N∗-sets
u : A→ R\>0 and a map γ : A/N

∗
→ A, such that (cf. the writing conventions in Section 11)

x R y⇔ γ (x) · u(x)⇔ γ (y)−1 · ũ(y)

with

ũ(y) =
{
u(y) if u(y) ∈ A
r if u(y) = r+.

Moreover, if we ask the pair (u, γ ) to satisfy some natural conditions, then it is unique up to replacing it by (λ · u, γ ) for a
λ ∈ R>0.
Let us conclude this introduction with some remarks about the nature of our results, and their link with the literature

on the topic. Our algebraic study of homothetic orders began with homothetic semiorders on homogeneous sets in [11]
and was later generalized to homothetic interval orders and homothetic semiorders on general sets in [13]. As we said, we
extended the homogeneous case to positive orders in [12]. Following the work of Ducamp and Falmagne [8], the term of
biorder has been introduced by Doignon et al. [7] who identify conditions for their representation by two functions. In their
terminology, the domains of the two functions are not necessarily identical but Aleskerov and Masatlioglu [3] use the same
terminology for the particular case of a single domain, like we do in this paper. The same definition for biorder is also used in
the useful survey of threshold representations by Aleskerov, Bouyssou andMonjardet [2]. Recent papers such as Bosi et al. [4]
and [5] propose a (semi)continuous representation of interval orders and state that it can be extended to biorders. Compared
with these ‘‘ordinal’’ approaches, the originality of our work resides in its algebraic nature, which allows us to disregard
the consideration of a topology on the set A. Moreover, we provide uniqueness properties that allow us to ‘‘measure’’ the
intervals or thresholds of our representations. As for the set of open and closed intervals (possibly empty) of the real numbers
to represent possibly non-super-Archimedean orders, it has been used by Nakamura [14]. Another possibility is Narens [15],
where non-standard models of the real numbers are considered to treat the abandon of the super-Archimedean condition.
We would also like to point out a recent example of a structure without transitivity but with asymmetry in Abbas et al. [1]
(note their structures are not necessarily representable by two functions like in this paper). Finally, a useful review of orders
that are asymmetric and transitive is Fishburn [10] and a review of nontransitive (but asymmetric) representations can be
found in Fishburn [9].
Notations/writing conventions. We denote byR,Q, Z the sets of real numbers, rational numbers and integers; and we write
N∗ = Z>0. If X and Y are two subsets of R, we write XY = {rs : r ∈ X, s ∈ Y }.
If R and R′ are two binary relations on a set A, for x, y, z ∈ A, we write x R y R′ z ⇔ x R y and y R′ z.
The symbol

∐
means disjoint union.

1. The sets R\
>0, B and A

Recalling the definition of R\ given in the introduction, for two intervals I, I ′ in R\, we have I ≤ I ′ ⇔ I ⊃ I ′. Hence, the
relation≤ is a total order on R\ and≤ on R\ extends≤ on R: it is given by (r, s ∈ R; t ∈ R\):

r+ ≤ s+ ⇔ r ≤ s+ ⇔ r ≤ s,
r+ ≤ s⇔ r < s,
t ≤ ∞.

For r, s ∈ R\, we define

r ≥ s⇔ s ≤ r,
r < s⇔ {r ≤ s and r 6= s} ⇔ s > r.

We also endow R\ with the structure of an additive monoid extending the one of R, defined by (r, s ∈ R):

r + s+ = r+ + s+ = (r + s)+,
r +∞ = r+ +∞ =∞+∞ =∞.

Notice that the relation ≤ on R\ is compatible with the operation +. In this manner, (R,+,≤) is an ordered additive sub-
monoid of (R\,+,≤).
Let R\>0 = {r ∈ R\ : r > 0}; this is a sub-semigroup ofR\. Consider R\>0 → R\>0, x 7→ x∨ the map defined by (r ∈ R>0):

r∨ = (r−1)+, (r+)∨ = r−1,
(0+)∨ = ∞, ∞

∨
= 0+.

It is an involution: for r ∈ R\>0, we have (r
∨)∨ = r . In particular, it is a bijective map. And for r, s ∈ R\>0, we have

r ≤ s⇔ r∨ ≥ s∨.
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Let R>0 × R\>0 → R\>0, (s, r) 7→ s · r be the R>0-set structure on R\>0 defined by (s, r ∈ R>0):

s · r = sr, s · r+ = (sr)+,
s · 0+ = 0+, s · ∞ = ∞.

For (s, r) ∈ R>0 × R\>0, we have

(s · r)∨ = s−1 · r∨.

Let

B = R>0 ∪ {q+ : q ∈ Q>0} ∪ {0+,∞},
A = R>0 ∪ {0+,∞},

Q\

>0 = Q>0 ∪ {q+ : q ∈ Q>0} ∪ {0+,∞}.

We have the inclusions A ⊂ B and Q\

>0 ⊂ B. Moreover, we have R>0 · A = A, Q>0 · B = B and Q>0 · Q
\

>0 = Q\

>0; i.e. A is
a sub-R>0-set of R>0, and B and Q\

>0 are sub-Q>0-sets of R
\

>0. The involution x 7→ x∨ induces by restriction three bijective
maps

B→ B∨ = {r+ : r ∈ R≥0} ∪ Q>0 ∪ {∞},

A→ A∨ = {r+ : r ∈ R≥0} ∪ {∞},

Q\

>0 → Q\

>0.

And we have

B ∪ B∨ = A ∪ A∨ = R\>0,

B ∩ B∨ = A ∩ A∨ = Q\

>0.

Remark 1.1. Let r, s ∈ B such that r > s. Then r 6= 0+, s 6= ∞, and either r 6= s+ and then there exists a q ∈ Q>0 such that
r > q > s; or r = s+ and then s ∈ Q>0. So in both cases, there exists a q ∈ Q>0 such that r > q ≥ s. ?

2. The sets R(A), R′(A) and R′′(A)

Recall the definition ofR(A) andR′(A) given in the introduction. Denote by R∅ and R∞ the binary relations on A that are
respectively empty and trivial; i.e. for all x, y ∈ A, we have x(−R∅)y and x R∞ y. Both belong toR′(A). And we have R∨

∅
= R∞

and R∨
∞
= R∅.

The setR(A) is endowed with a structure of aQ>0-set: for R ∈ R(A) and q ∈ Q>0, we write q = m
n withm, n ∈ N∗, and

we denote Rq the binary relation on A defined by x Rq y ⇔ mx R ny. By (hI), the relation Rq is well-defined, i.e. it does not
depend on the choice ofm and n such that q = m

n . It clearly belongs toR(A). For R ∈ R(A) and q, q′ ∈ Q>0, we have

(Rq)q
′

= Rqq
′

.

And the subsetR′(A) ofR(A) is Q>0-stable.
For R ∈ R(A), we denote R′ the binary relation on A defined by

x R′ y⇔ (for allm, n ∈ N∗ such thatm > n, we havemx R ny).

Then R′ ∈ R′(A), and the mapR(A)→ R′(A), R 7→ R′ is the identity relation onR′(A).
For R ∈ R(A), the relation R∨ still belongs toR(A) (easy to check). And themapR(A)→ R(A), R 7→ R∨ is an involution:

for R ∈ R(A), we have (R∨)∨ = R. For R ∈ R(A) and q ∈ Q>0, we have

(Rq)∨ = (R∨)q
−1
,

(Rq)′ = (R′)q.

LetR′(A)∨ be the subset ofR(A) formed by relations satisfying the following condition (hA)∨ (for all x, y ∈ A):
(hA)∨: if (m+ 1)x Rmy for allm ∈ N∗, then x R y.
The involutionR(A)→ R(A), R 7→ R∨ induces by restriction two bijective maps, that are the inverse of one another:

R′(A)→ R′(A)∨,
R′(A)∨ → R′(A).

LetR′′(A) = R′(A) ∩R′(A)∨. The involutionR(A)→ R(A), R 7→ R∨ induces by restriction a bijective map

R′′(A)→ R′′(A).

Notice that since R∅, R∞ ∈ R′(A) and R∞ = R∨∅ , we have R∅, R∞ ∈ R′′(A).
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3. The invariants P R
x,y , s

R
x,y and tRx,y

Let R ∈ R(A), and let x, y ∈ A. Let

P Rx,y = {mn
−1
: m, n ∈ N∗, mx R ny} ⊂ Q>0.

If q ∈ P Rx,y, then we have the inclusion Q≥q ⊂ P Rx,y. Therefore

sRx,y =
⋃
q∈P Rx,y

[q,+∞[

is an element ofR\>0, and we have s
R
x,y∩Q = P Rx,y. We distinguish two cases: either for all q ∈ P Rx,y, we haveP Rx,y∩Q<q 6= ∅,

and then

sRx,y =

{
[inf

R
(P Rx,y)]

+ if P Rx,y 6= ∅
∞ if not;

or there exists a s ∈ Q>0 such thatP Rx,y = Q≥s, and then sRx,y = s. In particular, we have s
R
x,y ∈ B∨. The triplet (x, R, y) is said

to be super-Archimedean in the first case, and non super-Archimedean in the second case. Notice that R ∈ R′(A) if and only if
for all x′, y′ ∈ A, the triplet (x′, R, y′) is super-Archimedean.

Notation 3.1. For R ∈ R(A), we noteAR the set of (x, y) ∈ A × A such that the triplet (x, R, y) is super-Archimedean, and
we letBR = (A× A) r AR. We also define

AR1 = {x ∈ A : (x, y) ∈ AR, ∀y ∈ A},

AR2 = {y ∈ A : (x, y) ∈ AR, ∀x ∈ A},

and

BRi = A r ARi (i = 1, 2).

For R ∈ R(A), sinceBR ⊂ BR1 ×BR2 , we have the decomposition

AR = AR ∩ (BR1 ×BR2 )
∐

AR ∩ (BR1 ×AR2)
∐

AR ∩ (AR1 ×BR2 )
∐

AR1 ×AR2. (3.2)

Let R ∈ R(A), and let x, y ∈ A. Let

tRx,y = (s
R
x,y)
∨
∈ B.

From what precedes, we have

(x, R, y) ∈ AR ⇔ tRx,y ∈ A.

Moreover, we have

x R y⇔ 1 ∈ P Rx,y ⇔ s
R
x,y ≤ 1⇔ t

R
x,y ≥ 1

+
⇔ tRx,y > 1. (3.3)

And for allm, n ∈ N∗, we have

tRmx,ny =
m
n
· tRx,y.

Lemma 3.4. Let R ∈ R(A).

(1) For (x, y) ∈ AR, we have

tR
∨

y,x =

{
r if sRx,y = r

+ with r ∈ R>0 r Q>0

sRx,y if sRx,y ∈ {0
+,∞} or if sRx,y = q

+ with q ∈ Q>0.

(2) For (x, y) ∈ BR, we have

tR
∨

y,x = s
R
x,y ∈ Q>0.
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Proof. Let (x, y) ∈ A× A. We have P R
∨

y,x = {q
−1
: q ∈ Q>0 r P Rx,y}.

Suppose first that tRx,y ∈ {0
+,∞}. Then (y, x) ∈ AR

∨

and

tR
∨

y,x = s
R
x,y ∈ {0

+,∞}.

Suppose now that tRx,y ∈ R>0. We thus have sRx,y = r
+ for a r ∈ R>0, and

P R
∨

y,x = Q>0 ∩ [r−1,+∞[.

We distinguish two cases: either r ∈ R>0 r Q>0, and then (y, R∨, x) ∈ AR
∨

and tR
∨

y,x = r; or r ∈ Q>0, and then
(y, R∨, x) ∈ BR

∨

and tR
∨

y,x = r
+.

Suppose finally that tRx,y ∈ B r A. We thus have sRx,y = q for a q ∈ Q>0, and

P R
∨

y,x = Q>0 ∩ ]q−1,+∞[.

Therefore, we have (y, R∨, x) ∈ AR
∨

and tR
∨

y,x = q. �

By (3.4), for R ∈ R(A), we have

BR
∨

= {(y, x) ∈ A× A : sRx,y ∈ {q
+
: q ∈ Q>0}}. (3.5)

4. The functionΦR

For R ∈ R(A), denote ΦR : A× A→ B the function (x, y) 7→ tRx,y. Following Section 3, for R ∈ R(A) and (x, y) ∈ A× A,
we have (x, y) ∈ AR ⇔ ΦR(x, y) ∈ A; in particular, we have

R ∈ R′(A)⇔ ΦR(A× A) ⊂ A. (4.1)

Proposition 4.2. For R ∈ R(A),ΦR is the unique functionΦ : A× A→ B satisfying (for all x, y ∈ A and all m, n ∈ N∗):

(1) Φ(mx, ny) = m
n · Φ(x, y);

(2) x R y⇔ Φ(x, y) > 1.

Conversely, any binary relation R] on A such that there exists a functionΦ]
: A× A→ B satisfying (1) and (2), belongs toR(A).

Proof. The converse is straightforward, and for R ∈ R(A), the function ΦR satisfies the conditions (1) and (2) of the
proposition. Let R ∈ R(A), and let Φ, Φ ′ : A × A → B be two functions satisfying the conditions (1) and (2) of the
proposition. Suppose that there exists a couple (x, y) ∈ A × A such that Φ ′(x, y) 6= Φ(x, y). By symmetry, we can suppose
that Φ ′(x, y) > Φ(x, y). By Remark 1.1, there exist p, q ∈ N∗ such that pq−1Φ ′(x, y) > 1 ≥ pq−1Φ(x, y). Therefore px R qy
and px (−R) qy; contradiction. HenceΦ is unique. �

The functionsΦR∅ andΦR∞ are constant, given by

ΦR∅ = 0
+,

ΦR∞ = ∞.

And for R ∈ R(A) and q ∈ Q>0, we have

ΦRq = q · ΦR.

For R ∈ R(A), the functionΦR′ : A× A→ A is given by

ΦR′(x, y) =
{
ΦR(x, y) ifΦR(x, y) ∈ A
q ifΦR(x, y) = q+.

We thus haveΦR ≥ ΦR′ with the equality if and only if R = R′. For R ∈ R′(A), let

R(A)R = {S ∈ R(A) : S ′ = R}

be the fibre of the projectionR(A)→ R′(A) above R. We thus have

R(A)R = {S ∈ R(A) : ΦR(x, y) ∈ {ΦS(x, y),ΦS(x, y)+}, ∀(x, y) ∈ A× A}.

Let R ∈ R(A). Following (3.3), for x, y ∈ A, we have x R∨ y if and only if sRy,x > 1. Define σ
R
y,x ∈ B by

σ Ry,x =

{
sRy,x if sRx,y ∈ Q\

>0
r if sRy,x = r

+ with r ∈ R>0 r Q>0.
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Then we have σ Rmx,ny =
m
n · σ

R
x,y and x R

∨ y ⇔ σ Ry,x > 1. Therefore, the function A × A → B, (x, y) 7→ σ Ry,x coincides with
ΦR∨ . And by (3.4), for x, y ∈ A, the triplet (x, R∨, y) is super-Archimedean if and only sRy,x 6∈ {q

+
: q ∈ Q>0}; i.e. if and only

if tRy,x 6∈ Q>0. We deduce that

R ∈ R′(A)∨ ⇔ ΦR(A× A) ⊂ B r Q>0. (4.3)
By (4.1) and (4.3), for R ∈ R(A), we have

R ∈ R′′(A)⇔ ΦR(A× A) ⊂ A r Q>0. (4.4)
LetR∅,∞(A) be the set of relations R ∈ R(A) such thatΦR(A× A) ⊂ {0+,∞}. By (4.4), we have the inclusion

R∅,∞(A) ⊂ R′′(A).
Precisely, the involutionR(A)→ R(A), R 7→ R∨ induces by restriction a bijective map

R∅,∞(A)→ R∅,∞(A).

5. The functionsΦ>, Φ≥ : R
\
>0 × R\

>0 → B

The relations> and≥ on the R>0-set R
\

>0, are positive homothetic orders, and we have≥= (>)
∨. Let

Q = {(r, r ′) ∈ R>0 × R>0 : r ′
−1r ∈ Q>0}.

The subsetsB> andB≥ of R\>0 × R\>0 are given by:
B>
= {(r+, r ′) : (r, r ′) ∈ Q},

B≥ = B>
∪Q ∪ {(r+, r ′+) : (r, r ′) ∈ Q}.

And the subsetsB>
i andB≥i (i = 1, 2) of R

\

>0 are given by:
B>
1 = {r

+
: r ∈ R>0},

B>
2 = R>0,

B≥1 = B≥2 = B>
1 ∪B>

2 .

Following (4.2), for R ∈ {>,≥}, there exists a unique function ΦR : R
\

>0 × R\>0 → B satisfying (for all r, r ′ ∈ R\>0 and all
m, n ∈ N∗):
(1) ΦR(m · r, n · r ′) = m

n · Φ(r, r
′);

(2) r > r ′ ⇔ ΦR(r, r ′) > 1.
The functionΦ> is explicitly given by:

Φ>(r,∞) = Φ>(0+, r) = 0+ (r ∈ R\>0),

Φ>(∞, r) = ∞ (r ∈ R\>0 r {∞}),

Φ>(r, 0+) = ∞ (r ∈ R\>0 r {0+}),

Φ>(r, r ′) = Φ>(r+, r ′
+
) = Φ>(r, r ′

+
) = r ′−1r (r, r ′ ∈ R>0),

Φ>(r+, r ′) = r ′
−1r (r, r ′ ∈ R>0, r ′

−1r 6∈ Q>0),

Φ>(r+, r ′) = (r ′
−1r)+ (r, r ′ ∈ R>0, r ′

−1r ∈ Q>0).

And the functionΦ≥ is explicitly given by:

Φ≥(∞, r) = Φ≥(r, 0+) = ∞ (r ∈ R\>0),

Φ≥(r,∞) = 0+ (r ∈ R\>0 r {∞}),

Φ≥(0+, r) = 0+ (r ∈ R\>0 r {0+}),

Φ≥(r, r ′) = Φ≥(r+, r ′
+
) = Φ≥(r+, r ′) = r ′

−1r (r, r ′ ∈ R>0, r ′
−1r 6∈ Q>0),

Φ≥(r, r ′) = Φ≥(r+, r ′
+
) = Φ≥(r+, r ′) = (r ′

−1r)+ (r, r ′ ∈ R>0, r ′
−1r ∈ Q>0),

Φ≥(r, r ′
+
) = r ′−1r (r, r ′ ∈ R>0).

By the above formulas, for R ∈ {>,≥}, r, r ′ ∈ R\>0 and a, b ∈ Q>0, we have

ΦR(a · r, b · r ′) = b−1a · ΦR(r, r ′). (5.1)

Remark 5.2. Thanks to the above formulas, for R ∈ {>,≥}, we can explicitly describe the relation R′ ∈ R′(A). ?

Remark 5.3. The relations> and≥ induce by restriction twopositive homothetic orders on theQ>0-setB. And the functions
B× B→ B associated to these two orders are of course the restrictions to B× B of the functionsΦ> andΦ≥. ?
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6. Generalized homothetic biorders

Let R be a binary relation on A. We say that R is a generalized homothetic biorder if there exist two functions u1, u2 : A→
R\>0 satisfying (for all x, y ∈ A and allm ∈ N∗):

(1) ui(mx) = m · ui(x) (i = 1, 2);
(2) x R y⇔ u1(x) > u2(y).

Clearly, any generalized homothetic biorder on A is an element of R(A). And the relations R∅ and R∞ are generalized
homothetic biorders: for R = R∅, we can take for (u1, u2) the pair of constant functions (0+,∞); and for R = R∞, we
can take for (u1, u2) the pair of constant functions (∞, 0+).
LetR•(A) be the subset ofR(A) formed by generalized homothetic biorders. And let

R′
•
(A) = R•(A) ∩R′(A),

R∅,∞
•
(A) = R•(A) ∩R∅,∞(A).

We thus have the inclusions

{R∅, R∞} ⊂ R∅,∞
•
(A) ⊂ R•(A) ∩R′′(A) ⊂ R′

•
(A) ⊂ R•(A).

Definition 6.1. Let R ∈ R•(A). We call representation of R a pair of functions (u1, u2) on Awith values in R\>0, satisfying the
conditions (1) and (2) above. More generally, if E is a sub-N∗-set of R\>0, we call representation of R in E a pair of functions
(u1, u2) on Awith values in E, satisfying the conditions (1) and (2) above.

Lemma 6.2. Let R ∈ R•(A), and let (u1, u2) be a representation of R. For all x, y ∈ A, we have

ΦR(x, y) = Φ>(u1(x), u2(y)).

Proof. Clear. �

For R ∈ R(A), we define

AR1 = {x ∈ A : x R y, ∃y ∈ A} = {x ∈ A : P
R
x,y 6= ∅, ∃y ∈ A},

AR2 = {y ∈ A : x R y, ∃x ∈ A} = {y ∈ A : P
R
x,y 6= ∅, ∃x ∈ A},

and

AR1,2 = {x ∈ A
R
1 : y R

∨ x, ∃y ∈ A} = {x ∈ AR1 : P
R
x,y 6= Q>0, ∃y ∈ A},

AR2,1 = {y ∈ A
R
2 : y R

∨ x, ∃x ∈ A} = {y ∈ AR2 : P
R
x,y 6= Q>0, ∃x ∈ A}.

We have the inclusion

BR ⊂ AR1,2 × A
R
2,1. (6.3)

Notice that

AR1 = ∅ ⇔ A
R
2 = ∅ ⇔ R = R∅

and that

AR1,2 = ∅ ⇔ A
R
2,1 = ∅ ⇔ R ∈ R∅,∞(A).

Let R ∈ R•(A), and let (u1, u2) be a representation of R. Then we have

BR = {(x, y) ∈ A× A : (u1(x), u2(y)) ∈ B>
}.

We then deduce that

BR1 = {x ∈ A : u1(x) = u2(y)
+, ∃y ∈ A},

BR2 = {y ∈ A : u1(x) = u2(y)
+, ∃x ∈ A}.

If R 6= R∅, then u1 6= 0+ and u2 6= ∞, and we have

AR1 = {x ∈ A : u1(x) 6= 0
+
},

AR2 = {y ∈ A : u2(y) 6= ∞}.

And if R 6∈ R∅,∞(A), then ui(A) 6⊂ {0+,∞} (i = 1, 2), and we have

AR1,2 = {x ∈ A : u1(x) 6∈ {0
+,∞}},

AR2,1 = {y ∈ A : u2(y) 6∈ {0
+,∞}}.
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Lemma 6.4. Let R ∈ R∅,∞
•
(A) r {R∅}. There exists a representation (u1, u2) of R in {0+,∞}, and this representation is unique.

Proof. For (x, y) ∈ A× A, we define

u1(x) =
{
∞ if x ∈ AR1
0+ otherwise

and

u2(y) =
{
0+ if y ∈ AR2
∞ otherwise.

Since R ∈ R∅,∞
•
(A), we have x R y⇔ (x, y) ∈ AR1 × A

R
2. Therefore, the pair (u1, u2) represents R. And since R 6= R∅, the sets

AR1 and A
R
2 are nonempty, therefore (u1, u2) is the unique representation of R in {0

+,∞}. �

Notice that in (6.4), without the condition ui(A) ⊂ {0+,∞} (i = 1, 2), the uniqueness property is no longer true: for any
two morphisms of N∗-sets u1 : A→ A r {0+} and u2 : A→ A r {∞}, the pairs (u1, 0+) and (∞, u2) represent R∞. Note
also that for R = R∅, the Lemma 6.4 is not true: the pairs (0+, 0+), (0+,∞) and (∞,∞) represent R∅.

Lemma 6.5. Let R ∈ R•(A)r R∅,∞
•
(A). There exists a representation (u1, u2) of R such that for i = 1, 2, we have ui(ARi ) ⊂ A.

In particular, we have u2(A) ⊂ A; and if R ∈ R′(A), then (u1, u2) is a representation of R in A. Moreover, up to multiplication
by an element of R>0, the pair (u1, u2) is unique: if (u′1, u

′

2) is another representation of R such that for i = 1, 2, we have
u′i(A

R
i ) ⊂ A, then there exists a λ ∈ R>0 such that (u′1, u

′

2) = (λ · u1, λ · u2).

Proof. Let (v1, v2) be a representation of R. For i = 1, 2, let ui : A→ A be the function defined by

ui(x) =
{
vi(x) if vi(x) ∈ A or x ∈ BRi
r if vi(x) = r+ and x ∈ ARi .

Since {(x, y) ∈ A× A : u1(x) = u2(y)+} ⊂ BR1 ×BR2 , the pair (u1, u2) is a representation of R. By construction, for i = 1, 2,
we have ui(ARi ) ⊂ A. And since the set {y ∈ A : v2(y) ∈ B r A} is contained inAR2, we have u2(A) ⊂ A. Finally, if R ∈ R′(A),
sinceAR1 = A = AR2, (u1, u2) is a representation of R in A.
Let (u′1, u

′

2) be another representation of R such that for i = 1, 2, we have u
′

i(A
R
i ) ⊂ A. By (6.2), for x, y ∈ A, we have

Φ>(u1(x), u2(y)) = ΦR(x, y) = Φ>(u′1(x), u
′

2(y)).

Since R 6∈ R∅,∞
•
(A), we have ui(A) 6⊂ {0+,∞} (i = 1, 2), and hence:

– on A r AR1, we have u1 = u
′

1 = 0
+;

– on AR1 r AR1,2, we have u1 = u
′

1 = ∞;
– on A r AR2, we have u2 = u

′

2 = ∞;
– on AR2 r AR2,1, we have u2 = u

′

2 = 0
+.

On the other hand, for (x, y) ∈ (AR1 ×AR2) ∩ (A
R
1,2 × A

R
2,1), we have u1(x), u2(y), u

′

1(x), u
′

2(y) ∈ R>0 and

u′2(y)
−1u′1(x) = ΦR(x, y) = u2(y)

−1u1(x).

Therefore, ifAR1 ×AR2 6= ∅, then there exists a constant λ ∈ R>0 such that for all (x, y) ∈ AR1 ×AR2, we have

(u′1(x), u
′

2(y)) = (λ · u1(x), λ · u2(y)).

In particular, if R ∈ R′(A), the lemma is proved.
Suppose now that R 6∈ R′(A). Then the setBR = Φ−1R (BrA) is nonempty. And for (x, y) ∈ BR, we have u1(x) ∈ R\>0rA,

u2(y) ∈ R>0, and u2(y)−1 · u1(x) = q+ for a q ∈ Q>0; in particular, we haveΦR(x, y) = u2(y)−1 · u1(x). For (x, y) ∈ BR, we
thus have

u2(y)−1 · u1(x) = u′2(y)
−1
· u′1(x) ∈ {q

+
: q ∈ Q>0}.

Therefore, there exists a constant µ ∈ R>0 such that for all (x, y) ∈ BR, we have

(u′1(x), u
′

2(y)) = (µ · u1(x), µ · u2(y)).

In particular, ifΦ−1R (R>0) = ∅, the lemma is proved.
Take a couple (x, y) ∈ Φ−1R (R>0) ⊂ AR, and let us show that u′1(x) = µ · u1(x) and u

′

2(y) = µ · u2(y). If x ∈ BR1 , then
there exists a b ∈ A such that (x, b) ∈ BR; and we have u′1(x) = µ · u1(x). Suppose that x ∈ AR1. Then u1(x), u

′

1(x) ∈ R>0. If
u′1(x) > µu1(x), then there existm, n ∈ N∗ such that

u′1(mx) > u
′

2(nb) = µu2(nb) > µu1(mx);
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contradiction. Also, if u′1(x) < µu1(x), then there existm, n ∈ N∗ such that

u′1(mx) < u
′

2(nb) = µu2(nb) < µu1(mx);

contradiction. Hence u′1(x) = µu1(x). The equality u′2(y) = µ · u2(y) is obtained similarly. This ends the proof of the
lemma. �

Notice that in (6.5), it follows from the above proof that without the condition ui(ARi ) ⊂ A (i = 1, 2), the uniqueness
property is no longer true.

Lemma 6.6. Let R ∈ R•(A), and let (u1, u2) be a representation of R. We have:

R ∈ R∅,∞
•
(A)⇔ u1(A) ⊂ {0+,∞} or u2(A) ⊂ {0+,∞},

R ∈ R′
•
(A)⇔ u1(A) ∩ {r+ : r ∈ u2(A) ∩ R>0} = ∅.

Proof. For (x, y) ∈ A × A, we have ΦR(x, y) ∈ {0+,∞} if and only if u1(x) ∈ {0+,∞} or u2(y) ∈ {0+,∞}; and we have
(x, y) ∈ BR if and only there exists a q ∈ Q>0 such that u1(x) = q · u2(y)+. This ends the proof of the lemma. �

7. Generalized homothetic intervals (resp. weak) orders

A generalized homothetic biorder on A is called a:

– generalized homothetic interval order if for any (i.e. for one) representation (u1, u2) of R, we have u1 ≤ u2;
– generalized homothetic weak order if for any (i.e. for one) representation (u1, u2) of R, we have u1 = u2; in which case we
say that u1 is a representation of R.

Let us recall that a relation binary R on A is said to be:

– reflexive if for all x ∈ A, we have x R x;
– symmetric if for all x, y ∈ A, we have x R y⇔ y R y;
– transitive if for all x, y, z ∈ A, we have x R y R z ⇒ x R z.

For all binary relations R and R′ on A, we note R ∩ R′ the binary relation on A defined by

x (R ∩ R′) y⇔ x R y and x R′ y.

Note that for any binary relation R on A, the indifference relation S = R∨ ∩ (−R) is symmetric. Indeed, for x, y ∈ A, we have

x S y⇔ x (−R) y and y (−R) x.

Lemma 7.1. Let R ∈ R•(A), and let S = R∨ ∩ (−R). Then R is:
– a generalized homothetic interval order if and only if S is reflexive;
– a generalized homothetic weak order if and only if S is reflexive and transitive.

Proof. Let (u1, u2) be a representation of R. For x, y ∈ A, we have

x S y⇔
{
u2(x) ≥ u1(y)
u2(y) ≥ u1(x).

Therefore, S is reflexive if and only if u1 ≤ u2; i.e. if and only if R is a generalized homothetic interval order.
Suppose that R is a generalized homotheticweak order. Then u1 = u2, and for all x, y ∈ A, we have x S y⇔ u1(x) = u1(y).

Therefore S is transitive.
Conversely, suppose that S is reflexive and transitive. Suppose that there exists a x ∈ A such that u1(x) 6= u2(x). Since

x S x, we have u1(x) < u2(x). Let q, q′ ∈ Q>0 such that q < 1 < q′ and

qu1(x) < u1(x) < qu2(x) < q′u1(x) < u2(x) < q′u2(x).

Write q = m
n and q

′
=
m′
n′ withm, n, m

′, n′ ∈ N∗, and let y = nn′x, z = mn′x and t = m′nx. Then we have

u1(z) < u1(y) < u2(z) < u1(t) < u2(y) < u2(t).

Hence z S y S t and z (−S) t; contradiction. Therefore, u1 = u2. �

Remark 7.2. The relation > on R\>0 is a generalized homothetic weak order: it is represented by the identity morphism
R\>0 → R\>0. ?

Remark 7.3. The empty relation on A is a generalized homothetic weak order: the constant functions u = 0+ and u = ∞
represent R∅. On the contrary, the trivial relation on A is neither a generalized homothetic weak order nor a generalized
homothetic interval order: for all representations (u1, u2) of R∞, we have u1 > u2. ?
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8. An example: The relation� on T (A)

Let T (A) = A × R(A) × A. We endow T (A) with the structure of a Q>0-set (hence a fortiori of a N∗-set) defined by
q · (x, R, y) = (x, Rq, y), and we note � the binary relation on T (A) defined by: (x1, R1, y1) � (x2, R2, y2) if and only there
existm, n ∈ N∗ such thatmx1 R1 ny1 andmx2 (−R2) ny2.

Lemma 8.1. The relation � on T (A) is a generalized homothetic weak order. Moreover, the function u� : T (A) → B given by
u�(x, R, y) = ΦR(x, y) is a representation of � in B, and a morphism of Q>0-sets.

Proof. The function Φ is clearly a morphism of Q>0-sets. Let (x1, R1, y1), (x2, R2, y2) ∈ T (A). We have (x1, R1, y1) �
(x2, R2, y2) if and only if there exist m, n ∈ N∗ such that mn · ΦR1(x, y) > 1 ≥

m
n · ΦR2(x, y); i.e. if and only there exists

a q ∈ Q>0 such thatΦR1(x, y) > q ≥ ΦR2(x, y). By (1.1), we obtain that

(x1, R1, y1) � (x2, R2, y2)⇔ ΦR1(x, y) > ΦR2(x, y).

Hence the lemma. �

Let % the binary relation on T (A) defined by %= �∨. It is given by

(x1, R1, y1) % (x2, R2, y2)⇔ u�(x1, R1, y1) ≥ u�(x2, R2, y2).

Let∼ be the indifference relation associated with�, defined by

(x1, R1, y1) ∼ (x2, R2, y2)⇔ u�(x1, R1, y1) = u�(x2, R2, y2).

This is an equivalence relation on T (A). The quotient set

T (A) = T (A)/ ∼

inherits the Q>0-set structure of T (A), and u� : T (A)→ B is factorized through an injectivemorphism of Q>0-sets

u� : T (A) ↪→ B.

The study of the properties of this morphism will be the subject of a further work.

9. Characterization of generalized homothetic biorders

Consider the six following properties (for all x, y, z, t ∈ A):

(1S) if (x, t) ∈ AR and x R y R∨ z R t , then we have x R t;
(2S) if (x, t) ∈ AR, (y, z) ∈ AR2,1 × A

R
1,2 and x R t , then there existm, n, p ∈ N∗ such that we havemx R ny R∨ pz Rmt;

(3S) if (x, t) ∈ BR and t R∨ y R z R∨ x, then we have t R∨ x;
(4S) if (x, t) ∈ BR, (y, z) ∈ AR1,2 × A

R
2,1 and t R

∨ x, then there existm, n, p ∈ N∗ such that we havemt R∨ ny R pz R∨mx;
(5S) The fibreΦ−1R (0

+) is empty or union of sets of the form {x} × A or A× {y}, and the fibreΦ−1R (∞) is empty or union of
sets of the form {x} × AR2 or A

R
1 × {y};

(6S) If (x, y) ∈ BR1 ×BR2 , then we have (y, x) ∈ AR
∨

.

Remark 9.1. In the condition (6S), we can replace the set BR1 × BR2 by the set (B
R
1 × BR2 ) ∩ AR. Indeed, by (3.4), we know

that for (x, y) ∈ BR, we have (y, x) ∈ AR
∨

. For (x, y) ∈ BR1 × BR2 , the triplet (x, R, y) is potentially non super-Archimedean
in the sense that there exist x′, y′ ∈ A such that the triplets (x, R, y′) and (x′, R, y) are non super-Archimedean. And the
condition (6S)means that the triplets potentially non super-Archimedean (x, R, y) behave as ‘‘true’’ non super-Archimedean
triplets. �

Lemma 9.2. Let R ∈ R(A). If R satisfies ( 5S), then we have

Φ−1R (B r {0+,∞}) = AR1,2 × A
R
2,1.

Proof. For x, y ∈ A, we have

x ∈ A r AR1 ⇔ ΦR(x, A) = 0+,

y ∈ A r AR2 ⇔ ΦR(A, y) = 0+,

and

x ∈ AR1 r AR1,2 ⇔ ΦR(x, AR2) = ∞,

y ∈ AR2 r AR2,1 ⇔ ΦR(AR1, y) = ∞.
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If R satisfies (5S), we deduce that

ΦR(x, y) = 0+ ⇔ x ∈ A r AR1 or y ∈ A r AR2,

ΦR(x, y) = ∞⇔ x ∈ AR1 r AR1,2 or y ∈ A
R
2 r AR2,1.

Hence the lemma. �

Proposition 9.3. For R ∈ R(A), we have R ∈ R•(A) if and only if R satisfies the properties ( iS) for i = 1, . . . , 6.

Proof. Let R ∈ R•(A), and let (u1, u2) be a representation of R. Then the relation R∨ on A is given by

x R∨ y⇔ u2(x) ≥ u1(y).

By looking at description of the setsBR, AR1,2 and A
R
2,1 given in the Section 6, it is easy to verify that the properties (1S), (2S),

(3S) and (4S), are true for R. For x, y ∈ A, we have ΦR(x, y) = 0+ if and only if u1(x) = 0+ or u2(x) = ∞; and we have
ΦR(x, y) = ∞ if and only if one of the two following conditions is satisfied:

– u2(x) = ∞ and u1(y) 6= ∞;
– u1(x) 6= 0+ and u1(y) = 0+.

Therefore R satisfies (5S). As for the property (6S), let (x, y) ∈ BR1 × BR2 . By Remark 9.1, we can suppose that (x, y) ∈ AR.
By Section 6, we have u1(x) = r+ and u2(y) = r ′ for some r, r ′ ∈ R>0. And by (3.4), we have (y, x) ∈ AR

∨

if and only if
tRx,y ∈ R>0 r Q>0. But by (6.2) and the Section 5, we have

tRx,y =
{
r ′−1r if r ′−1r ∈ R>0 r Q>0

(r ′−1r)+ if r ′−1r ∈ Q>0.

But the case r ′−1r ∈ Q>0 is not possible, because (x, y) ∈ AR. Hence R satisfies (6S).
Conversely, let R ∈ R(A) be a relation satisfying the properties (iS) for i = 1, . . . , 6. We can suppose that R 6= R∅. Then

AR1 6= ∅ and A
R
2 6= ∅. By (5S), for (x, y) ∈ Φ

−1
R ({0

+,∞}), we can let

u1(x) =
{
0+ ifΦR(x, A) = 0+

∞ ifΦR(x, AR2) = ∞

and

u2(y) =
{
0+ ifΦR(AR1, y) = ∞
∞ ifΦR(A, y) = 0+.

The function u1 × u2 onΦ−1R ({0
+,∞}) is well-defined, and for (x, y) ∈ Φ−1R ({0

+,∞}), we have

x R y⇔ u1(x) = ∞ > 0+ = u2(y).

In particular if R ∈ R∅,∞(A), then Φ−1R ({0
+,∞}) = A× A, the functions u1, u2 : A→ {0+,∞} are morphisms of N∗-sets,

and the relation R is a generalized homothetic biorder.
We now suppose that R 6∈ R∅,∞(A). Then AR1,2 6= ∅ and A

R
2,1 6= ∅. And by (9.2), we have

Φ−1R (B r {0+,∞}) = AR1,2 × A
R
2,1.

We hence need to extend the function u1 × u2 on AR1,2 × A
R
2,1. Let a couple (a, b) ∈ A

R
1,2 × A

R
2,1. For (x, y) ∈ AR, By (1S) and

(2S), we have the equality (cf. [13] Lemma 3.4)

P Rx,y = P Rx,bP
R∨
b,aP

R
a,y. (∗)

Also, for (x, y) ∈ BR, by (3S) and (4S), as in the proof of Lemma 3.4 of [13], we obtain the equality

P R
∨

y,x = P R
∨

y,aP
R
a,bP

R∨
b,x . (∗∗)

Suppose first that R ∈ R′(A) r R∅,∞(A). Then (a, b) ∈ AR, therefore sRa,b = r
+ for a r ∈ R>0; and by (3.4), we have

tR
∨

b,a =

{
r if r ∈ R>0 r Q>0
r+ if r ∈ Q>0.

In particular, (b, a) is an element of AR
∨

1,2× A
R∨
2,1. Let (x, y) ∈ A

R
1,2× A

R
2,1. Since (x, b) and (x, a) are elements of A

R
1,2× A

R
2,1, t

R
x,b

and tRa,y are elements of R>0, and by (∗), we have the equality

tRx,y = t
R
x,brt

R
a,y ∈ R>0.
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Let

u1(x) = tRx,b
and

u2(y) = r−1(tRa,y)
−1.

Then we have

x R y⇔ tRx,y > 1⇔ u1(x) > u2(y).

The functions u1, u2 : A→ A thereby defined aremorphisms ofN∗-modules, and the relation R is a generalized homothetic
biorder.
Suppose now that R ∈ R(A) r R′(A). Then BR (⊂ AR1,2 × A

R
2,1) 6= ∅, and we can suppose that the pair (a, b) has been

chosen such that:

– (a, b) ∈ AR if the inclusionBR ⊂ AR1,2 × A
R
2,1 is strict;

– tRa,b ∈ Q>0 if the set {(a′, b′) ∈ AR : tRa′,b′ ∈ Q>0} is nonempty.

By (3.4), three cases may appear:

– case 1: tR∨b,a = s
R
a,b = q ∈ Q>0 if (a, b) ∈ BR;

– case 2: tR∨b,a = (t
R
a,b)
−1
= r ∈ R>0 r Q>0 if (a, b) ∈ AR and tRa,b 6∈ Q>0;

– case 3: tR∨b,a = s
R
a,b = q

+
∈ B r A if (a, b) ∈ AR and tRa,b ∈ Q>0.

Denote R\>0 → A, r → r̃ the projection defined by

r̃ =
{
r if r ∈ A
s if r = s+ for a s ∈ R>0.

By (3.4), for (x, y) ∈ AR1,2 × A
R
2,1, we have t̃

R∨
y,x = s̃

R
x,y. Take (x, y) ∈ A

R
1,2 × A

R
2,1. let α = t

R
x,b, β = s

R
a,y. By (∗), if (x, y) ∈ AR

(which excludes case 1), we have

tRx,y =
{
rα̃β̃−1 in case 2
qα̃β̃−1 in case 3.

And by (∗∗), if (x, y) ∈ BR, we have

tRx,y =

q
+
· α̃β̃−1 in case 1

r+ · α̃β̃−1 in case 2
q+ · α̃β̃−1 in case 3.

Let us show that

tRx,y > 1⇔


q+ · α̃ > β̃ in case 1
r+ · α̃ > β̃ in case 2
qα̃ > β̃ in case 3 if x ∈ AR1 or y ∈ AR2
q+ · α̃ > β̃ in case 3 if (x, y) ∈ BR1 ×BR2 .

Case 1 is obvious.
In case 2, if (x, y) ∈ AR, we have tRx,y > 1⇔ rα̃ > β̃; and if (x, y) ∈ AR and rα̃ = β̃ , then tRx,y = 1, which is impossible

(since we are in case 2).
Suppose that we are in case 3. If (x, y) ∈ BR (⊂ BR1×BR2 ), we have t

R
x,y > 1⇔ q

+
·α̃ > β̃ . Suppose then that (x, y) ∈ AR.

If x ∈ AR1 or y ∈ AR2, then we have t
R
x,y > 1 ⇔ qα̃ > β̃ . There remains the case (x, y) ∈ BR1 × BR2 . This is when we use

property (6S): we have tRx,y > 1⇔ qα̃ > β̃; and if qα̃ = β̃ , then tRx,y = qα̃β̃
−1
= 1 ∈ Q>0, therefore (by (3.4)) (y, x) 6∈ AR

∨

,
which contradicts property (6S). We thus have tRx,y > 1⇔ q

+
· α̃ > β̃ .

Let

u1(x) =


q+ · t̃Rx,b in case 1
r+ · t̃Rx,b in case 2
qt̃Rx,b in case 3 if x ∈ AR1
q+ · t̃Rx,b in case 3 if x ∈ BR1

and

u2(y) = s̃Ra,y.
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Then we have

x R y⇔ tRx,y ⇔ u1(x) > u2(y).

The functions u1, u2 : A→ A thereby defined aremorphisms ofN∗-modules, and the relation R is a generalized homothetic
biorder. This ends the proof of the proposition. �

Remark 9.4. For R ∈ R′(A), the properties (3S), (4S) and (6S) are empty. Therefore, properties (1S), (2S) and (5S) characterize
the relations R ∈ R′

•
(A). ?

Remark 9.5. In general, the inclusionR•(A) ⊂ R(A) is strict. For instance, take for A the union N∗x
∐

N∗y of two copies of
N∗, endowed with the natural structure of N∗-set, and let R stands for the binary relation on A defined by (form, n ∈ N∗):

– mx R nx⇔ m > n;
– mx R ny for allm, n;
– myR ny⇔ m > n;
– my (−R) nx for allm, n.

The relation R is h-independent and h-positive, but it is not a generalized homothetic biorder. ?

Remark 9.6. The positive homothetic order ≥ on R\>0 is not a generalized homothetic biorder. Indeed, the property (6S) is
not satisfied: for r, r ′ ∈ R>0 such that r ′

−1r ∈ Q>0, we have (r ′, r+) ∈ (BR1 ×BR2 ) r BR and (r+, r ′) ∈ B>. ?

10. ‘‘Operations’’ on generalized homothetic biorders

Let us consider the projection R\>0 → A, r → r̃ defined in the proof of (9.3). And for any function u : A→ R\>0, denote
ũ : A→ A the function defined by ũ(x) = ũ(x).
Let R ∈ R•(A), and let (u1, u2) be a representation of R. For q ∈ Q>0, the positive homothetic order Rq is a generalized

homothetic biorder represented by thepair of functions (q·u1, u2). Similarly, the positive homothetic orderR′ is a generalized
homothetic biorder represented by the pair of functions (ũ1, ũ2). As for the order R∨, for x, y ∈ A, we have

x R∨ y⇔ u2(x) ≥ u1(y).

Lemma 10.1. Let R ∈ R•(A), and let (u1, u2) be a representation of R. For all x, y ∈ A, we have:

ΦR∨(x, y) = Φ≥(u2(x), u1(y)).

Proof. Clear. �

NoteR•(A)∨ the subset ofR(A) formed by orders R such that there exist two functions v1, v2 : A→ R\>0 satisfying (for
all x, y ∈ A and allm ∈ N∗):

(1) vi(mx) = mvi(x) (i = 1, 2);
(2) x R y⇔ v1(x) ≥ v2(y).

Let R ∈ R•(A)∨, and let (u1, u2) be a representation of R∨. Then we have

BR = {(x, y) ∈ A× A : (u2(x), u1(y)) ∈ B≥}.

The involutionR(A)→ R(A), R 7→ R∨ induces by restriction two bijective maps

R•(A)→ R•(A)∨,
R•(A)∨ → R•(A),

that are inverse one another.

Remark 10.2. Directly or through the bijection R•(A) → R•(A)∨, one can characterize the relations R ∈ R•(A)∨ as in
Section 9. But we will not do it here. It is also possible to characterize the relations R ∈ R•(A) such that R∨ ∈ R•(A), as in
Section 9 or in terms of a representation (u1, u2) of R (the following result is given without proof):

(1) Let R ∈ R∅,∞
•
(A)r {R∅}, and let (u1, u2) be the representation of R in {0+,∞}. Then R∨ ∈ R•(A) if and only if u1 = ∞ or

u2 = 0+.
(2) Let R ∈ R•(A) r R∅,∞

•
(A), and let (u1, u2) be a representation of R. Put X = u1(A) ∩ u2(A). Then R∨ ∈ R•(A) if and only

if X ∩ {0+,∞} = ∅ and X ∩ {r+ : r ∈ X ∩ R>0} = ∅.Moreover, if R ∈ R′
•
(A) and (u1, u2) is a representation in A, then

R∨ ∈ R•(A) if and only if X ∩ {0+,∞} = ∅, and R∨ ∈ R′
•
(A) if and only if X = ∅. ?
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11. The relation R1 for R ∈ R•(A)

For R ∈ R(A), we note R1 the binary relation on A defined by (for all x, y ∈ A):

x R1 y⇔ ΦR(x, y) > ΦR(y, x).

Since for x, y ∈ A and m, n ∈ N∗, we have ΦR(mx, ny) = m
nΦR(x, y), R1 is still a positive homothetic order. For R ∈ R(A),

the indifference relation S1 = R∨1 ∩ (−R1) associated with R1, is given by (for x, y ∈ A)

x S1 y⇔ ΦR(x, y) = ΦR(y, x).

In particular, S1 is reflexive. Moreover, we have the

Proposition 11.1. Let R ∈ R•(A). Then R1 is a generalized homothetic weak order.

Proof. Let (u1, u2) be a representation of R. We must define a morphism of N∗-sets u : A→ R\>0 such that for all x, y ∈ A,
we have x R1 y⇔ u(x) > u(y).
If R ∈ {R∅, R∞}, then R1 = R∅, and the constant functions u = 0+ or u = ∞ can be chosen. We can thus suppose that

R 6∈ {R∅, R∞}. By (6.4) and (6.5), we can also suppose that:

– if R ∈ R∅,∞
•
(A), then (u1, u2) is the representation of R in {0+,∞};

– if R ∈ R•(A) r R∅,∞
•
(A), then u1(AR1) ⊂ A and u2(A) ⊂ A.

Since R 6∈ {R∅, R∞}, we have u1 6= 0+ and u2 6= ∞. And we also have:

– if u2 = 0+, then R ∈ R∅,∞
•
(A) and u1(A) = {0+,∞};

– if u1 = ∞, then R ∈ R∅,∞
•
(A) and u2(A) = {0+,∞}.

If u2 = 0+, then for x, y ∈ A, we have

ΦR(x, y) =
{
∞ if u1(x) = ∞
0+ if u1(x) = 0+;

in particular, R1 is a generalized homothetic weak order represented by the function u = u1. If now u1 = ∞, then for
x, y ∈ A, we have

ΦR(x, y) =
{
∞ if u2(y) = 0+

0+ if u2(y) = ∞;

in particular, R1 is a generalized homothetic weak order represented by the function u = u∨2 , defined by u(x) = u2(x)
∨. We

can then suppose that u2 6= 0+ and u1 6= ∞.
By (5S), for (x, y) ∈ Φ−1R ({0

+,∞}), we have ΦR(x, AR2) = ΦR(x, y) or ΦR(AR1, y) = ΦR(x, y). And for x, y ∈ A, by the
hypothesis above, we have

ΦR(x, AR2) = ∞⇔ u1(x) = ∞,

ΦR(x, AR2) = 0
+
⇔ u1(x) = 0+,

ΦR(AR1, y) = ∞⇔ u2(y) = 0
+,

ΦR(AR1, y) = 0
+
⇔ u2(y) = ∞.

Recall that AR1,2 = {x ∈ A : u1(x) 6∈ {0
+,∞}} and AR2,1 = {x ∈ A : u2(x) 6∈ {0

+,∞}}. Hence for x ∈ A r (AR1,2 ∩ A
R
2,1) =

(A r AR1,2) ∪ (A r AR2,1), there exists a i ∈ {1, 2} such that ui(x) ∈ {0
+,∞}, and we can let

u(x) =
{
∞ if u1(x) = ∞ or u2(x) = 0+

0+ if u1(x) = 0+ or u2(x) = ∞.

From what precedes, the element u(x) ∈ {0+,∞} is well-defined. Besides, for x ∈ AR1,2 ∩ A
R
2,1, since u1(x) ∈ R\>0 r {0+,∞}

and u2(x) ∈ R>0, we can let

v(x) = u2(x) · u1(x) ∈ R\>0 r {0+,∞}

and

u(x) =
{
v(x)1/2 if v(x) ∈ R>0
(r1/2)+ if v(x) = r+.

The function u : A→ R\>0 thereby defined, is a morphism of N
∗-sets. And for x ∈ A, we have

x ∈ AR1 ⇔ u(x) ∈ A.
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Wemust check that for all x, y ∈ A, we have

ΦR(x, y) > ΦR(y, x)⇔ u(x) > u(y).

Take x, y ∈ A. If x, y ∈ AR1,2 ∩ A
R
2,1, we have

ΦR(x, y) > ΦR(y, x) ⇔ Φ>(u1(x), u2(y)) > Φ>(u1(y), u2(x))
⇔ u2(y)−1 · u1(x) > u2(x)−1 · u1(y)
⇔ v(x) > v(y)
⇔ u(x) > u(y).

If (x, y) ∈ Φ−1R ({0
+,∞}) and (y, x) ∈ Φ−1R (B r {0+,∞}), we have

ΦR(x, y) > ΦR(y, x) ⇔ ΦR(x, A) = ∞ orΦR(A, y) = ∞
⇔ u(x) = ∞ or u(y) = 0+.
⇔ u(x) > u(y).

If (x, y) ∈ Φ−1R (B r {0+,∞}) and (y, x) ∈ Φ−1R ({0
+,∞}), we have

ΦR(x, y) > ΦR(y, x) ⇔ ΦR(y, A) = 0+ orΦR(A, x) = 0+

⇔ u(y) = 0+ or u(x) = ∞.
⇔ u(x) > u(y).

Finally, if (x, y), (y, x) ∈ ΦR({0+,∞}), we have

ΦR(x, y) > ΦR(y, x) ⇔ ΦR(x, y) = ∞ andΦR(y, x) = 0+

⇔ u(x) = ∞ and u(y) = 0+.
⇔ u(x) > u(y).

This ends the proof of the proposition: R1 is a generalized homothetic weak order, represented by u. �

To formulate the following results, it is convenient to write:

∞ · r = ∞ (r ∈ R\>0),

0+ · r = 0+ (r ∈ R\>0),

∞
−1
= 0+,

(0+)−1 = ∞.

Beware: we have∞ · 0+ = ∞ and 0+ · ∞ = 0+.

Corollary 11.2. Let R ∈ R•(A), and let (u1, u2) be a representation of R such that:

– if R = R∅, then (u1, u2) = (0+,∞);
– if R ∈ R∅,∞

•
(A), then (u1, u2) is the representation of R in {0+,∞};

– If R ∈ R•(A) r R∅,∞
•
(A), then u1(AR1) ⊂ A and u2(A) ⊂ A.

Thus, the function u : A→ R\>0 defined by

u(x) =


∞ if u1(x) = ∞ and u2(x) 6= ∞
∞ if u1(x) 6= 0+ and u2(x) = 0+

0+ if u1(x) = 0+ or u2(x) = ∞
r1/2 if u2(x) · u1(x) = r ∈ R>0
(r1/2)+ if u2(x) · u1(x) = r+ ∈ R\>0 r A

is a representation of R1. And letting γ , γ− : A→ A be the functions defined by

γ (x) =


∞ if u1(x) = ∞ and u2(x) 6= ∞
∞ if u1(x) 6= 0+ and u2(x) = 0+

0+ if u1(x) = 0+ or u2(x) = ∞
[u2(x)−1ũ1(x)]1/2 otherwise

and

γ−(x) = γ (x)−1,

we have (γ · u, γ− · ũ) = (u1, u2).
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Proof. If R = R∅, then u = 0+, γ = 0+ and (γ · u, γ− · ũ) = (0+,∞) = (u1, u2). If R = R∞, then u = ∞, γ = ∞ and
(γ · u, γ− · ũ) = (∞, 0+) = (u1, u2). Note that in both cases, u is a representation of R1 = R∅. If now R 6∈ {R∅, R∞}, then u
is the representation of R1 built in the proof of (11.1); and we verify that (γ · u, γ− · ũ) = (u1, u2). �

Let A/N∗ be the quotient-set of A by the equivalence relation∼N∗ on A defined by
x∼N∗ y⇔ there existm, n ∈ N∗ such thatmx = ny.

Corollary 11.3. Let R ∈ R•(A). There exist a morphism of N∗-sets u : A → R\>0 and a map γ : A/N
∗
→ A such that (for all

x, y ∈ A)

(i) u(AR1) ⊂ A,

(ii) γ−1(∞) = u−1(∞),
(iii) γ−1(0+) = u−1(0+),
(iv) x R y⇔ γ (x) · u(x) > γ (y)−1 · ũ(y).

Moreover, up to multiplication by an element of R>0, the pair (u, γ ) is unique: if (u′, γ ′) is another pair of maps like above and
satisfying the conditions (i), (ii), (iii), (iv), then there exists a λ ∈ R>0 such that (u′, γ ′) = (λ · u, γ ).

Proof. The existence of the pair (u, γ ) results from the Corollary 11.2; note that by construction, u : A→ R\>0 is amorphism
of N∗-sets, and γ : A → A factorizes through A/N∗. The uniqueness of the pair (u, γ ) is a consequence of the uniqueness
property in Lemmas 6.4 and 6.5. �

Corollary 11.4. Let R ∈ R•(A), and let u : A→ R\>0 and γ : A/N
∗
→ A be a morphism of N∗-sets and a map, satisfying the

conditions (i), (ii), (iii), (iv) of (11.3). Then u represents R1.

Remark 11.5. For R ∈ R(A)rR•(A), the relation R1 is not always a generalized homothetic weak order.We can for instance
verify that the relation R of the Remark 9.5 satisfies R1 = R. ?

Remark 11.6. For R ∈ R(A) and n ∈ N∗, we define by induction an order Rn+1 ∈ R(A): we put Rn+1 = (Rn)1. For all
R ∈ R(A) and all n ∈ N∗, one can verify that Rn = R1. ?

12. Comments

The Corollary 11.3 is a generalization of [13]. Indeed, in [13] we have obtained the same result but only for homothetic
interval orders on A. Representing a relation R ∈ R•(A) by a pair (u, γ ) as in (11.3) rather than by a pair (u1, u2) like in (6.4)
and (6.5), has the advantage of showing the underlying generalized homothetic weak order R1 (represented by u). We can
then ‘‘see’’ R as a deformation of R1, the deformation being represented by the twisting factor γ : A → A. This naturally
leads to group in a single family the relations R ∈ R•(A) having the same underlying generalized homothetic weak order R1.
The introduction of the set R\>0 is not merely an ad hoc construction to treat the abandon of the super-Archimedean

property. Recall thatR\>0 is the set of intervals ofR>0 of the form [r,+∞[ and ]r,∞[, to which the empty interval is added.
The name itself of ‘‘interval order’’ naturally leads to the following question: why limiting oneself to relations that can be
represented by closed intervals, and not consider the relations that can be by intervals which are closed or open. The set
R\>0 is a response to this question. Another response is given by the following variant of Lemma 6.5:

Lemma 12.1. Let R ∈ R•(A) r R∅,∞
•
(A). There exist two morphisms of N∗-sets v1, v2 : A→ A such that for all x, y ∈ A, we

have

x R y⇔
{
v1(x) > v2(y) if (x, y) ∈ AR

v1(x) ≥ v2(y) if (x, y) ∈ BR.

Moreover, up to multiplication by an element of R>0, the pair (v1, v2) is unique.
Proof. By (6.5), there exists a representation (u1, u2) of R such that u1(AR1) ⊂ A and u2(A) ⊂ A. Consider the projection
R\>0 → A, r → r̃ defined in the proof of (9.3). And for any function u : A→ R\>0, note ũ : A→ A the function defined by
ũ(x) = ũ(x). Then, the pair (v1, v2) = (ũ1, u2) satisfies the conditions of the lemma. And the uniqueness property of (v1, v2)
results from the uniqueness property of (u1, u2). �

In our opinion, the answer (6.5) is preferable to the answer (12.1). Indeed, in (12.1), we must first choose whether a
triplet (x, R, y) is or is not super-Archimedean before being able to decide whether x R y or x (−R) ywith the pair of functions
(v1, v2). On the other hand, in (6.5), the fact that a triplet (x, R, y) is or is not super-Archimedean is deduced a posteriori from
the representation (u1, u2); i.e. the pair of values (u1(x), u2(y)) ∈ R\>0 × R\>0 allows not only deciding if x R y or x (−R) y,
but also deciding whether (x, R, y) is super-Archimedean or not.
The study of positive homothetic orders on Awhich are not generalized homothetic biorders will be the focus of a further

work.
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