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A B S T R A C T

This paper studies a balance whose unobservable fulcrum is not necessarily located at the middle of its two pans.
It presents three different models, showing how this lack of symmetry modifies the observation, the formalism
and the interpretation of such a biased measuring device. It argues that the biased balance can be an interesting
source of inspiration for our abstract understanding of how a measuring device influences the measurement
process.

Then, at last, as they were nearing the fountains for the fourth time, the
father of all balanced his golden scales and placed a doom in each of
them, one for Achilles and the other for Hector. As he held the scales by
the middle, the doom of Hector fell down deep into the house of Hades-
and then Phoebus Apollo left him.
Homer, Iliad XXII.

Give me a place to stand on, and I can move the earth.
Archimedes

1. Introduction

What would have happened had Apollo not taken his scales by the
middle? Depending on what we assume to observe with such a biased
measuring device, how can we formalize empirical observation and
how can we interpret the numbers issued from measurement? This
paper proposes a rigorous study of these questions in the context of a
scale, or balance, that is not necessarily composed of arms of equal
lengths.

A main motivation for broadening our understanding of measure-
ment with the study of a biased balance lies in the universality of the
unbiased balance for measurement and judgment. Osiris uses a balance
to measure the soul of the dead in ancient Egypt. In the Greek epic
tradition, deities like Apollo use a balance to decide of the fate of
heroes. As a measuring device, it is discussed by Plato, Aristotle, Euclid
and Archimedes [11,24]. It appears in the Bible as a symbol for rigor
and exactness and in the Koran as a symbol of supreme wisdom. It

symbolizes the invariable middle in ancient China, is part of the San-
skrit mythology and of the Indian and Tibetan spiritual traditions [5].
In the middle ages, the balance was essential to evaluate the price of
goods and to allow for the development of trade [13]. Nowadays, it is a
symbol of justice all over the modern world. It is ubiquitous in the
philosophy of science [3,8,4] and is a seminal example for the foun-
dations of measurement (e.g. [9,27,25]). Historically, the equal-arm
balance has been a model for the measurement of objects and for the
intuition of unbiased judgment. By studying a biased balance, we in-
tend to better understand how measurement is affected by a biased
measuring device and how biased judgements may be modelled.

This is especially true for the representational theory of measure-
ment [9]. This abstract approach to the foundations of measurement
formulates formal axioms that can describe empirical observation and
be necessary and sufficient to prove the existence and uniqueness of a
measuring scale. Let us show how this works with an equal-arm bal-
ance. Suppose we position an object, denoted x, on one of its pan and an
object y on the other pan. Suppose that we observe that x is lower than y.
This observation is formally described with a binary relation ≻0 as
“ ≻x y0 ”. Adding another object z to x,we observe that x with z are
lower than y. Since this happens for any object z, the empirical reg-
ularity of such an observation leads to assume the following property:

≻ ⇒ ∘ ≻for all x y z x y x z y, , : ( ) ,0 0

where “∘” naturally means the operation of jointly positioning two
objects on the same pan of the balance. Further axioms then reflect the
laws or regularities that can be observed, including in particular the

https://doi.org/10.1016/j.measurement.2018.05.009
Received 15 December 2014; Received in revised form 11 April 2018; Accepted 2 May 2018

E-mail address: marc.lemenestrel@upf.edu.

Measurement 125 (2018) 659–666

Available online 05 May 2018
0263-2241/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02632241
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2018.05.009
https://doi.org/10.1016/j.measurement.2018.05.009
mailto:marc.lemenestrel@upf.edu
https://doi.org/10.1016/j.measurement.2018.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2018.05.009&domain=pdf


following additive independence property:

≻ ⇔ ∘ ≻ ∘for all x y z x y x z y z, , : ( ) ( ).0 0

With sufficient axioms characterizing such an abstract and idealized
setting (the measurement is performed in a locally uniform gravita-
tional field, there is no uncertainty nor any other influence on the
measuring process, etc.), the task of representational measurement is
then to prove the existence of a function, say φ, which assigns a number
to each object such that an object is lower than another on the balance
if and only if it is assigned a greater number. Formally, we prove that
there exists a real-valued function φ such that

≻ ⇔ >x y φ x φ y( ) ( ),0

∘ = +φ x y φ x φ y( ) ( ) ( ).

Such a representation theorem builds on Hölder’s theorem (see [23]
for an English translation) and the theory of extensive measurement
(see [9, Chapter 3]). In such an abstract and idealized setting and be-
cause the balance is assumed to be of equal arms, the number φ x( ) can
be interpreted as the mass of x as in classical mechanics. The function φ
is unique up to multiplication by a positive constant and is called a
ratio-scale (see [31]). Systematic predictions can be justified by this
formalization. For instance, if the sum of the mass of y and the mass of z
is greater than the mass of x, we predict with certainty that we will
observe that y with z is lower than x. With this abstract and idealized
model of the equal-arm balance (including the assumptions of a locally
uniform gravitational field, etc.), the observed relation between objects
does not depend on the measuring device and its formalization does not
depend on the observer. Also, the observed empirical relation is for-
malized with formal (non-numerical) statements which univocally
correspond with observation. Finally, a numerical representation is
provided which measures objects and the function alone suffices to this
measurement. Things are different with the biased balance. Depending
on what we observe, the bias may induce less empirical regularities that
must be reflected with weaker, and thus more general, axioms. A first
question arises as whether we can still measure objects with a ratio-
scale. Another question is whether we can measure the bias of the
balance and if yes, what does that measure means.

A biased balance is a two-arm balance whose fulcrum is not ne-
cessarily located at the middle of the two pans. The principle of the
balance with unequal arms as a measurement of torque has long been
understood, at least since Archimedes’ proof of the principle of the lever
(Propositions 6 and 7 of Book I of On the equilibrium of the planes, see
[11, p. 192]). Also, the so-called Roman or Steelyard balance, where
objects positioned on a tray at one end of the beam are balanced by
moving a counterweight along the opposite side of the beam, has been
employed to weigh large bodies from the earliest time. Not only the
principle of the lever had to be invoked, but also the account of the
weight of the tray (or hook) used to hold the object to be weighed,
which induces some complications (see for instance the Liber de Canonio
in [24]). As shown in Suppes [32], these earlier mathematical ap-
proaches are very close to the contemporaneous theory of conjoint
measurement [9, Chapter 6]. What they share in particular is that they
start with two quantities (here weights and distances) which can be
manipulated independently in order to observe their conjoint effect. In
particular, it is assumed possible to select the distances from the ful-
crum so that they are of appropriate proportions. Also, it is assumed
that distances can be divided into segments of equal length. In this
manner, we can use the device to measure torque and from the mea-
surement of distance derive an indirect measurement of weights.

Our study of the biased balance is of interest and novelty because it
does not assume that the distance from the fulcrum is an observable
primitive. Depending on what we observe as a relation among objects,
we characterize the implicit role of the bias. Hence, we do not start
from two quantities playing similar roles but with one that is observable
(the objects positioned on the balance and acting on it with their mass)

and infer the role of a factor that is not directly observable (the bias of
the balance). Because of the hidden role of the bias, the relation be-
tween objects presents less regularity. Therefore, we need to relax some
of the properties of the axioms that are supposed to describe the em-
pirical observation of an equal-arm balance. The biased balance being a
form of generalization of the equal-arm balance (that the fulcrum is
located in the middle is a special case), it provides a model as to how
the representational theory of measurement can be generalized. For
instance, the representational theory of measurement treats axioms
such as completeness and transitivity as necessary for the existence of a
ratio-scale.1 The theory of biased measurement [15–17,14] shows how
we can derive the existence of a ratio-scale while relaxing such axioms.

In order to study different assumptions about what can be observed
and different formalizations of empirical observation, this paper pre-
sents three models of the biased balance. Each model assumes different
ways to observe the behavior of the biased balance. Thus, each model
shows distinct empirical regularities which are reflected in different set
of axioms. Each set of axioms leads to a representation theorem proving
that, even with the irregularities emanating from the bias of the bal-
ance, a ratio-scale measure of the mass of objects can be shown to exist.
These theorems also reveal a numerical factor which quantifies these
irregularities and which intuitively corresponds to the bias of the bal-
ance. The interpretation of such number is not necessarily obvious, and
we make precise what it means and what it quantifies. The biased
balance hence leads to a more detailed analysis of the correspondence
between empirical observation and its formalization as a relational
structure. This step is usually taken for granted in the theory of re-
presentational measurement, due to an implicit assumption of the
symmetry of the measuring device. Methodologically, we study the
biased balance following three fundamental questions:

1. What do we observe and how can we formally describe it?
2. What numerical representation can be constructed from this formal

description?
3. What is the meaning of the numbers that we have constructed?

These questions are essential to a clear and precise understanding of
the use of numbers and of mathematical models in sciences. Because the
biased balance shows how the theory of representational measurement
may be broadened to apply to phenomena which do not present the
typical empirical regularities assumed by the symmetry of the mea-
suring device, it contributes to address one of its most interesting cri-
tiques (e.g. [28,20,21,2]).

The rest of the paper is structured as follows. In Section 2, we
present the basic terms and formal properties that we use to study a
biased balance. We also introduce the 3 models. In Section 3, we pre-
sent the first model which assumes that we can observe on which arm of
the balance each object is positioned. This model is the closest to the
intuition that the biased balance measures the torque and that a con-
joint approach should allow to measure both the mass and the distance
that compose it. This is carried out by formally defining “extended
objects” that are composed of an object together with the arm on which
it lies. In that case, we show how we can conjointly construct a ratio-
scale that measures the mass of objects and, for each biased balance, a
unique pair of numbers that measures the distances between the ful-
crum and each pan. In Section 4, a second model assumes that we can
observe whether a given object is positioned on the left or on the right
from the observer perspective. We do not however define “extended
objects” and let the formalism implicitly reflect the left and right dis-
tinction that depends on the observer. We show that this corresponds to
the most general mathematical properties but still allows for a ratio-
scale measuring objects to be constructed. Further, we show that we can

1 Mathematically, any representation of the form ≿ ⇔ ⩾x y φ x φ y( ) ( ) must assume
that the relation ≿ is complete and transitive.

M. Le Menestrel Measurement 125 (2018) 659–666

660



prove the existence of a unique factor that measures the irregularities
created by the bias of the balance. We explain that this number cannot
be simply interpreted as “the bias of the balance” because it depends on
the observer. In Section 5, we assume that we only observe which object
is “up” and which object is “down”. We again show how we can con-
struct a ratio-scale measuring the mass of objects and a unique factor
which can univocally be attributed the balance as measuring its bias.
However, this model reflects some indeterminacy in observable beha-
vior. We explain that this indeterminacy stems from the fact that the
interaction between the objects and the biased balance is not directly
observable. A short Section 6 concludes.

2. Preliminaries

In an experiment, the behavior of a biased balance is determined by
three types of considerations. First, there are the objects which are po-
sitioned on its pans. Second, there is the measuring device, the balance
itself, which has a specific bias, i.e. whose fulcrum is located at a given
place between the two pans. Third, there is the allocation of objects to
the pans. Indeed, given two objects and given one biased balance, the
behavior of the measuring device is not determined: it depends on the
respective positioning of the objects on the pans. This is the interaction
between the objects and the balance.

We refer to observation as the visual perception of the behavior of
the balance by an observer when objects are positioned on the pans. We
describe observations by pictures or by observational statements. Fig. 1
shows three different ways to observe a particular behavior of a biased
balance, with object x placed on one pan and object yplaced on the
other pan.

Each picture can be described by the following observational
statements:

(a1) x on pan # 1 is lower than y on pan #2;
(a )2 x on the left is lower than y on the right;
(a )3 x is lower than y.

The first statement a( )1 specifies on which pan each object is placed
and designates the pans in a manner independent of the observer.
Statement (a )2 specifies on which pan each object is positioned in a
manner which depends on the observer (left and right are relative to the
observer). Statement a( )3 only describes which object tilts the balance,
if any. We see below that these three observations lead to three dif-
ferent models.

Let us now consider the formalization of observations. We consider a
set of objects A and, as we have already done, we denote objects by

…∈x y z A, , . We designate by ∘x y the object consisting of two objects x
and y and we assume that the operation ∘ is closed (for all

∈ ∘ ∈x y A x y A, , ), commutative (for all ∈ ∘ = ∘x y A x y y x, , ) and associative

(for all ∈ ∘ ∘ = ∘ ∘x y z A x y z x y z, , , ( ) ( ) ). The set A endowed with such an
operation is a commutative semigroup. For �∈ ∗m , we define mx by

=x x1 and = − ∘mx m x x( 1) where �∗ stands for the set of positive in-
tegers. Naturally, mx designs the object consisting of m copies of x (note
this already departs from the intuitive analysis where every object is
distinct). Further, we assume that A is homogeneous, i.e. that given two
objects x and y, there exist two positive integers m and n such that

=mx ny (note that this hypothesis implies that there is no object of null
mass). As we did in the introduction, we formalize the behavior of the
balance with a binary relation noted ≻ when the balance is not at
equilibrium and ∼ when the balance is at equilibrium. To characterize
the observed regularities of each model and to prove our representation
theorems, we use different properties for binary relations on a com-
mutative semigroup. Consider a binary relation R on a commutative
semigroup X, we use the following definitions:

• R is asymmetric if and only if, for all ∈ ⇒x y X xRy not yRx, , ( );
• R is symmetric if and only if, for all ∈ ⇒x y X xRy yRx, , ;

• R is complete if and only if, for all ∈x y X xRy or, , yRx;

• R is transitive if and only if, for all ∈x y z X xRy, , , ( and ⇒yRz xRz) ;

• R is positive if and only if, for all ∈ ⇒ ∘x y z X xRy x z Ry, , , ( ) ;

• R is non-trivial if and only if, for some ∈x y z t X xRy, , , , and not zRt( );
• R is homothetic if and only if, for all ∈x y X, and all

�∈ ⇔∗m xRy mxRmy, ;

• R is additively independent2 if and only if, for all
∈ ⇔ ∘ ∘x y z X xRy x z R y z, , , ( ) ( );

• R is super-archimedean3 if and only if, for all ∈ ⇒x y X xRy mxRny, ,
for some <m n, with �∈ ∗m n, .

We also use the following definition, which characterizes the pairs
for which the relation R is not super-archimedean4:

• A pair ∈ ×x y X X( , ) is balanced if and only if xRy and not mxRny( )
for all <m n, with �∈ ∗m n, .

Formalizing the biased balance aims at clarifying the conditions
under which the existence and uniqueness of a function that measures
objects, i.e. which assigns a numerical value (e.g. their mass value) to
each of them, can be proved. Such a function is denoted by φ and takes
its values in the set of positive real numbers,5 denoted � > 0. According
to the theory of representational measurement, this process of re-
presenting a relation which formalizes an observed behavior by a

Fig. 1. Three ways to describe the observation of the behavior of a biased balance.

2 This standard property is also often called monotonicity.
3 This is the term used by De Miguel et al. [7] and that we adopted in Le Menestrel and

Lemaire [17].
4 This property is inspired from the property of anomalous pairs in Fuchs [10].
5 This rules out zero mass objects. Note that this condition is mathematically imposed

by the assumption that the set of objects is homogeneous.
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relation among the numbers assigned to the objects is the one of mea-
surement. Another objective is to clarify the extent to which we can also
provide a quantitative characterization of the measuring device itself,
i.e. the bias of the balance. To this purpose, our representations will
reveal a factor, denoted α or β and belonging to the set of positive real
numbers. What such a factor means is indeed a matter of interpretation
whenever the balance or its bias is not itself an observable primitive of
the model.

By interpretation, we refer to the correspondence between something
pertaining to an experimental setting with some formal symbol or
statement, and reciprocally. This comprises the formalization of a
particular observation, or the empirical meaning of a formal symbol or
statement. This distinction between interpretation and measurement is
depicted in Fig. 2, with the example of statement (a2), anticipating our
second model below.

3. First model: Extending the definition of objects to include the
measuring device

In this first model, we consider an observer who can identify each
pan of the balance, calling them #1 and #2. Hence, the distinction
between the two pans of the balance is independent of the observer
(contrary to model 2 below) and is observable (contrary to model 3
below). The principle of this model resides in extending the definition
of objects in order to include their interaction with the measuring de-
vice. We consider the pair composed of object x and of pan #1 as being
an extended object and we denote it as x( ,1). The possible observations of
an experiment are pictured in Fig. 3. We may observe that x on pan #1
is lower than y on pan #2, which is written ≻x y( ,1) ( ,2)1 . We may observe
that y on pan #2 is lower than x on pan #1, which is written ≻y x( ,2) ( ,1)1 .
Finally, we observe that the balance is at equilibrium when x is on pan #1
and y on pan #2, written ∼x y( ,1) ( ,2)1 , if and only if none of the two
previous outcomes are observed.

In order to reflect observation properly, we cannot simply define the
relations ≻1 on the set ×A {1,2} because we want to reflect formally
that, for instance, ≻x y( ,1) ( ,1)1 is neither true or false but simply not
observable since x and y are not on two different pans. We therefore
need a slightly modified definition for the relation ≻1 .

Let = × ∪ ×B A A A A( ) ( )1 2 2 1 where = ×A A i{ }i with =i {1,2}. We
define ≻1 as a subset of B and we say that ≻1 is restrained6 to B. We can
define the equilibrium relation ∼1 from the relation ≻1 as: for all

∈x y B( , ) , for all ∈ ∼ − ⇔ ¬ ≻ −i x i y i x i y i{1,2},( , ) ( ,3 ) (( , ) ( ,3 )1 1 and
− ¬ ≻y i x i( ,3 ) ( , ))1 . The relation ≿1 designates the union of the relations

≻1 and ∼1 and is defined as, for all ∈x y A, and all
∈ ≿ − ⇔ ≻ −i x i y i x i y i{1,2}: ( , ) ( ,3 ) (( , ) ( ,3 )1 1 or ∼ −x i y i( , ) ( ,3 ))1 .

The observable natural regularities of this biased balance are re-
flected assuming that the relation ≻1 is positive, reflecting that mass is a
positive quantity. As in the introduction, the operation combining ob-
jects x and y as ∘x y naturally means the operation of jointly positioning
two objects on the same pan of the balance. Also, both relations ≻1 and
∼1 are homothetic: the behavior will not change if we take m copies of x
and of y ( �∈ ∗m ).

Further, the relation≻1 is super-archimedean but ∼1 is not. Indeed, if
the balance is at equilibrium, it will tilt as soon as the ratio of the
number of copies is modified. Note that in the theorem below, we use
this distinctive property to start from ≿1 and define the two relations ≻1

and ∼1 from this primitive. Finally, we assume that the relation ≿1 is
non-trivial, i.e. that there exist at least two objects such that the balance
tilts. Furthermore, the relation ≻1 is asymmetric (∼1 is symmetricby
construction).7 Finally, remark that these relations are not additively
independent whenever there is a bias.

This model leads to a form of conjoint representation:

Theorem 1. Let A be a commutative semigroup. Let = ×A A i{ }i
=i( {1,2}) and = × ∪ × ⊂ ×B A A A A A( ) ( ) {1,2}1 2 2 1 . Let ≻1 be a non-

trivial binary relation restrained to B that is asymmetric, positive, homothetic
and super-archimedean. Suppose that A is homogeneous. Then there exist a
function �→ >φ A: 0 and two numbers �∈ >β β,1 2 0 such that, for all

∈x y A, , all ∈i {1,2}, we have

≻ − ⇔ > −x i y i β φ x β φ y( , ) ( ,3 ) ( ) ( ),i i1 3 (i)

∘ = +φ x y φ x φ y( ) ( ) ( ). (ii)

+ =β β 1.1 2 (iii)

Moreover, the pair β β( , )1 2 is unique and the function φ is unique up to
multiplication by a positive constant.

Proof. Define the binary relation ∼1 restrained on B by: for all ∈x y B( , ) ,
for all ∈ ∼ − ⇔ ¬ ≻ −i x i y i x i y i{1,2},( , ) ( ,3 ) (( , ) ( ,3 )1 1 and

− ¬ ≻y i x i( ,3 ) ( , ))1 . Define also the relation ≿1 restrained on B as: for
all ∈x y B( , ) , for all ∈ ≿ − ⇔ ≻ −i x i y i x i y i{1,2}: ( , ) ( ,3 ) (( , ) ( ,3 )1 1 or

∼ −x i y i( , ) ( ,3 ))1 . Now, from ≻1, we define two binary relations ≻1
1 and

Fig. 2. Interpretation and measurement.

6 Remark that ⊂ ×B A( {1,2})2 hence ≻1 is not a relation defined on ×A {1,2}.

7 Because the relation is restrained, the formulation of the transitivity property does
not make much sense at this stage.
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≻1
2 on A:

≻ ⇔ ≻ −x y x i y i( , ) ( ,3 ).i
1 1

Both relations verify conditions of Theorem 1 in Le Menestrel and
Lemaire [17]. The additive property ii( ) is easily obtained from the
homogeneity property. To see this, take ∈x y A, . There exist m n, such
that =mx ny. Hence, we have ∘ =φ x y( )

∘ = ∘ = = + =+φ nx ny φ nx mx φ x φ x φ mx( ) ( ) ( ) ( ) ( )n n
n m

n n
1 1 1 +φ x φ y( ) ( ).

Hence, for =i 1,2, there exists a ratio-scale �→ >φ A:i 0 and a
constant �∈ >βi 0 such that

≻ ⇔ > −x y β φ x β φ y( ) (1 ) ( ).i
i i i i1

Because each φi is unique up to multiplication by a positive scalar,
we can suppose that = =φ φ φ1 2 . Moreover, for =i 1,2, define the
binary relation ≿i

1 on A by

≿ ⇔ ≿ −x y x i y i( , ) ( ,3 ).i
1 1

We have

≿ ⇔ ¬ ≻ −x y y x.i i
1 1

3

Since ≻ ⇒ ≿x y x yi i
1 1 , we have

> − ⇒ − ⩾− −β φ x β φ y β φ x β φ y( ) (1 ) ( ) (1 ) ( ) ( ),i i i i3 3

which is only possible if =−
−

β
β

β
β

1
1

1

1

2

2
, i.e. if = −β β12 1. The uniqueness

conditions are clear. □

The function φ is naturally interpreted as measuring the mass of the
objects. It is additive with respect to the composition of objects even
though the additive independence property has not been assumed to
describe empirical observation.8 Naturally, the numbers β1 and β2 are
interpreted as measuring the distance between the fulcrum and pans #1
and #2 respectively. In this model, these numbers are attributed to a
variable that is part of the primitives (namely each of the two pans). We
have here an instance of conjoint measurement, which is indeed similar
to the distributive triples in Luce and Narens [19]. To make the stan-
dard nature of the representation even more explicit, we define the
function �× → >AΦ: {1,2} 0 as

=x i β φ xΦ( , ) ( ).i

Then, the binary relation ≿1 restrained on B can be uniquely ex-
tended to a relation ≿1 that is complete and transitive (i.e. a weak order)
on ×A {1,2}. For all ∈x y A, and all ∈i j, {1,2}, we let

≿ ⇔ ⩾x i y j x i y j( , ) ( , ) Φ( , ) Φ( , ).1

In this manner, it is possible to obtain a standard representation
without a bias but with a two-attribute function: one attribute for the
object and one for its extension, i.e. the pan of the balance on which it is
placed. In this manner, when the interaction between the objects and
the balance can be part of the definition of objects, then the re-
presentation of the biased balance is not really biased.

4. Second model: A dependence on the observer

Consider a biased balance placed in front of the observer. Take two
objects x and y that are positioned on the left and right pan respectively.
As pictured in Fig. 4, we may observe (a2), i.e. that x on the left pan is
lower than y on the right pan. This is formally written ≻x y2 . We may
observe (b2), i.e. that the balance is at equilibrium when x is on the left pan
and y on the right pan. This is written ∼x y2 . Both ≻2 and ∼2 are binary
relations defined on the set of objects A.If the observer observes neither
of these two, then (c )2 must be observed, i.e. that y on the right pan is
lower than x on the left pan. If ≿2 is defined as ≿ ⇔ ≻x y x y(2 2 or

∼x y)2 , it formalizes that x on the left pan is lower when y is on the right
pan or the balance is at equilibrium. Therefore, we can simply formalize
that y on the right is lower than x on the lft as ¬ ≿x y2 .

The observable natural regularities of this biased balance are re-
flected assuming that the relation ≻2 is positive, that both relations ≻2
and ∼2 are homothetic and that the relation≻2 is super-archimedean but
∼2 is not. Finally, we assume that the relation ≿2 is non-trivial.

What is especially interesting is that the relation ≻2 is not necessa-
rily asymmetric. We may have ≻x y( 2 and ≻y x)2 when, for instance,
x and y have the same mass and the left arm is longer. As for the re-
lation ∼2, it is not necessarily symmetric: we may have ∼x y( 2 and

¬ ∼y x)2 whenever arms have different lengths. Also, the relations ≻2
and ∼2 are not necessarily transitive: when the left arm is longer, we
may have ≻ ≻x y y z( ,2 2 and ¬ ≻x z)2 and also ∼ ∼x y y z( ,2 2 and

¬ ∼x z)2 . Further, the relation ≿2 is not necessarily complete: we may
have ¬ ≿x y( 2 and ¬ ≿y x)2 . This happens, for instance, if x and y
have the same mass and the right arm is longer. Finally, the relation ≿2

is not necessarily additively independent because of a possible lever
effect.

In terms of the formal properties of the primitive relations ≻2 and
∼2, this model is thus very general. Despite this generality, we can prove
the existence and uniqueness of a numerical function that measures the
mass of the objects. We can also provide some sort of measurement of
the bias of the balance. This is shown in the following representation
theorem:

Theorem 2. Let A be a commutative semigroup endowed with a nontrivial
binary relation ≿2 that is positive and homothetic. Write ∼x y2 if and only if
x y( , ) is balanced and ≻x y2 if and only if ≿x y( 2 and ¬ ∼x y)2 . Suppose

Fig. 3. Observations of Model 1: Extension of the objects with each pan.

8 This is possible because of the both the homotheticity condition and the biased re-
presentation.
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A is homogeneous. Then there exist a function �→ >φ A: 0 and a number
>α 0 such that we have

≻ ⇔ >x y αφ x φ y( ) ( ),2

∼ ⇔ =x y αφ x φ y( ) ( ),2

∘ = +φ x y φ x φ y( ) ( ) ( ).

Moreover, φ is unique up to multiplication by a positive constant and α is
unique.

Proof. Suppose there is no balanced pair, then the theorem above
amounts to Theorem 1 in Le Menestrel and Lemaire [17]. If there are
balanced pairs, then ≿1 is not super-archimedean and we can use
Theorem 2 in Le Menestrel and Lemaire [17].□

A simple corollary of this theorem implies that, in a homogeneous
setting, any positive and homothetic relation is either asymmetric and
transitive, or it is complete. It is transitive and complete (and then not
asymmetric) if and only if the balance is not biased. Also, note that if
there are no balanced pairs, no equilibrium can be observed. In that
case, the relation ∼2 is empty and we have ≿ = ≻2 2. In this homo-
geneous setting, the factor α is then necessarily an irrational number9.

As in Model 1, the function φ is naturally interpreted as measuring
the mass of the objects. Contrary to Mari [20], it is not because the
primitive relation is intransitive that numerical measurement is ne-
cessarily impossible. Indeed, Theorem 1 shows that measurement of the
ratio of two masses is possible, in line with the definition of measure-
ment given by Michell [22, p. 287].

For us, the observer, if the number α measures the distance be-
tween the fulcrum and the left pan, then the distance between the
fulcrum and the right pan is 1. These lengths are unique up to mul-
tiplication by a positive constant: they constitute a ratio-scale.

The factor α cannot be directly interpreted as measuring “the bias of
the balance” because the same experiment (i.e. same objects, same
balance, same interaction) may lead to another formalization. Consider
another observer placed on the other side of the balance. She would
follow the same instructions to formalize her observations. However,
when one observer observes outcome a( )2 and formally write ≻x y2 ,
she would observe outcome c( )2 and write ¬ ≿′y x2 , where the ′ de-
notes the relation observed by the other observer. In her representation,
she would obtain a factor ′ =α α

1 that she may wrongly interpret as
measuring “the bias of the balance”. Hence, because “the bias of the
balance” may take two distinct values, the numerical factor α shall

rather be interpreted as reflecting “the bias of the balance from the
point of view of the observer”.

Note that such a dependence can be avoided with another for-
malization which has less generality. Suppose that we observe that x on
the left is lower than y on the right and that x on the right is lower than
y on the left. We then formalize that an object tilts the balance in-
dependently of the pan on which it is positioned. We write ≫x y2 if and
only if ≻x y( 2 and ¬ ≿y x)2 . The relation ≫2 does not have the same
properties than the relation ≻2: it is necessarily asymmetric and tran-
sitive. Hence, the factor α is necessarily lower or equal to 1 and the
corresponding representation, with less generality, is

≫ ⇔ >x y αφ x φ y( ) ( )2 with < ⩽α0 1. An example of interpretation of
≫2 distinct from the biased balance consists in formalizing the
weighing of objects by hand. One tends to permute objects in the hands
in order to get rid of a possible bias when assessing that an object has a
greater mass than the other. The procedure leaves out objects whose
masses are close, and this lack of discrimination results in a form of
“intransitive indifference” with a proportional threshold of just no-
ticeable difference referred to as Weber’s law (See [15] who refer to this
interpretation. See also the models in [16] and [14]).

5. Third model: A partial indeterminacy in observable behavior

We consider next a balance placed parallel to our axis of vision. The
observer sees which object is lower, if any, but does not observe on
which pan each object is positioned. When object x is placed on one pan
of the balance and object y on the other pan, we may observe (a )3 , i.e.
that x is lower than y, that we write as ≻x y3 (Fig. 5).We may observe
b( )3 , i.e. that the balance is at equilibrium, that we formalize as ∼x y3 .
Finally, we may observe c( 3), i.e. that y is lower than x which we write

≻y x3 . Compared with the previous model, the distinction left and
right does not apply. Because we cannot observe on which pan each
object is placed, it is not possible to control the permutation of two
objects when preparing an experiment.

Suppose that we observe that object x is lower than object y. Of
course, it does not mean that the mass of x is greater than the mass of y.
Suppose now that we make a second observation, and that this time,
with the same balance and the same objects, we observe that x and y are
at equilibrium. Then, we can infer that x indeed has a greater mass than
y, that x was positioned on the longer pan in the first experiment, and
that x was positioned on the shorter pan in the second experiment.
From two distinct observations, one being an equilibrium, we just
showed how to acquire some information about the interaction between
the objects and the measuring device, even though such interaction is
not directly observable. Two such observations allow to make de-
terministic predictions. For instance, the combination of x and another
object is necessarily lower than y. Note also that if we had observed y
lower than x in the second experiment, we could only have inferred that

Fig. 4. Observations of Model 2: Left and right dependence on the observer.

9 Reciprocally, we show in Le Menestrel and Lemaire [17] that if α is irrational, then no
equilibrium exists. Note also that in the absence of equilibrium, i.e. if and only if α is
irrational, we cannot be certain with a finite number of observations that two objects
have the same mass in a homogeneous setting. Hence, the assumption that we dispose of
identical copies of an object x becomes especially important.
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x and y have masses that do not differ “too much”, without gaining
information about the interaction with the measuring device nor being
able to make deterministic predictions.

Formally, the relation ≿3 designates the union of the relations ≻3
and ∼3 and can again be defined as ≿ ⇔ ≻x y x y(3 3 or ∼x y)3 . As in
model 1 and 2, the relation ≻3 is positive and super-archimedean, and
the relations≻3 and ∼3 are homothetic. The relation ≻3 is not necessarily
asymmetric and neither ≻3 nor ∼3 are necessarily transitive. On the
other hand, the relation ∼3 is symmetric, reflecting that we cannot
distinguish between objects at equilibrium. Also, the relation ≿3 is
complete (either one object tilts the balance, or the balance is at
equilibrium).

Even if it does not depend on the observer, this model has less
mathematical generality than model 1. Its representation, which de-
rives from the representation of the first model, reveals a factor greater
or equal to 1:

Theorem 3. Let A be a commutative semigroup endowed with a nontrivial
binary relation ≿3 that is positive, homothetic and complete. Write ∼x y3 if
and only if x y( , ) is balanced or y x( , ) is balanced, and ≻x y3 if and only if
( ≿x y3 and x y( , ) is not balanced). Suppose A is homogeneous. Then there
exist a function �→ >φ A: 0 and a number ⩾α 1 such that we have

≻ ⇔ >x y αφ x φ y( ) ( ),3

∼ ⇔
⎧
⎨
⎩

=

=
x y

αφ x φ y
or
φ x αφ y

( ) ( )

( ) ( )
,3

∘ = +φ x y φ x φ y( ) ( ) ( ).

Moreover, φ is unique up to multiplication by a positive constant and α is
unique.

Proof. This is a corollary of Theorem 1. □

Note that the symmetry of the relation ∼3 stems from its symme-
trical definition which differs from the one in model 2. This is because x
and y may put the balance at equilibrium while the pair y x( , ) is not
balanced. We have the peculiar property that the relations ≻3 and ∼3 are
not disjoint, i.e. we may have ≻x y3 and ∼x y3 . Because of this, it is
not possible in this model to know with certainty that the balance is not
biased.10

The function φ has the same interpretation as in model 2. For the
observer, if the number α is interpreted as measuring the longer arm,
then the shorter armis of length 1. These lengths constitute a ratio-
scale. Of course, since we cannot observe the arms, it is not possible to
say which one is the longer arm or the shorter.

Apart from the cases where deterministic predictions can be made,
one does not know which outcome is going to be observed in this
model. This partial indeterminacy is not due to insufficient knowledge
about the objects, nor to insufficient knowledge about the measuring
device, but to a lack of knowledge about the interaction between the
objects and the measuring device. What appears, from the point of view of
the observer, as the same “observable cause” (two given objects on a
given measuring device), does not lead to the “same observable effect.”
This illustrates a violation of procedural invariance where two sub-
stantially equivalent settings are not empirically equivalent (see e.g.
[26]). In other words, observation depends on how the measuring de-
vice treats the objects.11 Note that the three statements ≻ ∼x y x y,3 3

and ≻y x3 which describe the possible observations in this model are
not mutually exclusive. Hence, the correspondence between observa-
tional statements and formal statements is not one-to-one. A formal
statement may have two distinct meaning in terms of observational
statements. For instance, if the observational statement x is lower than y
necessarily implies the formal statement ≻x y3 , the formal statement

≻x y3 does not imply that we will necessarily observe that x is lower
than y. It merely means that observing that x is lower than y is possible. It
is as if there were a time asymmetry in the sense that a formal statement
can correspond either to a statement of fact (a description of an ob-
servation that took place in the past) either to a statement of possibility
(a prediction of an observation that may take place in the future).12 The
relation ≿3 can be easily obtained from the relation ≿2 of the second
model. Observing that x is lower than ymeans that either x on the left is
lower than y on the right, or x on the right is lower than y on the left.
Formally, we have ≿ ⇔ ≿x y x y(3 2 or ¬ ≿y x)2 . More precisely, the
relation ≿3 is formally the converse of the negation of the relation ≫2:
we have ≿ ⇔ ¬ ≫x y y x3 2 . Note that the relation ≫2 itself is not di-
rectly observable in this model. However, it can be derived from ob-
servation in some particular cases. For instance, we may observe

≻x y( 3 and ∼y x)3 and deduce that ∘ ≫x z y2 for all ∈z A. In this
manner, the relation ≫2 characterizes the pairs for which a determi-
nistic prediction can be made.

Fig. 5. Observations of Model 3: Partial indeterminacy due to unobservable interaction with the measuring device.

10 Here, our intuition suggests that observing an equilibrium between x and y in a large
number of experiments probably means that the balance is not biased, and that x and y
have the same mass. But this necessitates a probabilistic approach, with an hypothesis
about the random generating process assigning objects to the pans. This would be an
interesting avenue for further research with links with probabilistic models.

11 This is specially interesting for the modeling of preferences, which are often de-
pendant on the process by which they are constructed (e.g. [30,12], and also [29,18]).

12 Somewhat similar statements have been made in the context of quantum mechanics
(e.g. [1]).
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6. Conclusion

This paper provides a rigorous analysis of experiments where ob-
jects and a dissymmetric measuring device combine to produce an
observable phenomenon. Under idealized and abstract conditions
(uniform gravitational field, no uncertainty, no influence quantities,
etc.), it illustrates how measurement is possible even when the observed
relation between objects is incomplete, intransitive or does not verify
additive independence. It clarifies minimal conditions under which it is
possible to treat the interaction with the measuring device as one di-
mension of some “extended objects” (Model 1). It also shows how in-
terpretation of observation may lead to a formalism that is dependent
on the observer (Model 2) or to partial indeterminacy in observable
behavior (Model 3). Finally, The resulting form of “biased measure-
ment” illustrated by the biased balance extends measurement to rela-
tional structures that cannot be represented by a function only, but can
be represented by a function and a bias. The biased balance also allows
to study the relation between measurement and empirical observation
in more details. It illustrates how a biased measuring device which is
neither directly observable nor a primitive influences the observed re-
lation between objects. Thereby, it shows some extent to which a
measuring process device can be itself quantified.

For these models, the bias of the balance has been assumed to be
constant. Although this is a natural assumption to uncover the mathe-
matical and methodological peculiarities of such a device, it would be
interesting to study a biased balance whose fulcrum moves according to
specific properties. Also in terms of limitations, these insights are de-
rived from a model of measurement based on direct comparison. It
would be most interesting to study how this relates with the calibration
of the measuring instrument when the measurement is based on cali-
brated sensors. Furthermore, it would be interesting to assess whether
the homothetic property -which substitute for the additive in-
dependence property, is also a structural property in other significant
cases of metrology. Methodologically, the biased balance nevertheless
provides a concrete grasp to the distinctive roles played by the ob-
server, the measuring device and the objects, notions which usually
pertain to the theory of quantum mechanics (e.g. [35]) or to the phi-
losophy of science (e.g. [33]).

For the sake of simplicity, this paper has been written under the
homogeneity assumption for the objects under measurement. With
Bertrand Lemaire, we have generalized the theory of biased measure-
ment in a non-homogeneous setting [14]. These theorems allow for
biases that are not constant but do not fundamentally change the
methodological approach presented here. Notwithstanding, a general-
ization of Model 1 for the case of a balance with n pans will certainly be
an interesting generalization of the notion of a Grassman structure (see
[34, p. 229]).

Finally, the biased balance is a powerful model for the study of
biased judgments. Human beings cannot be viewed as deities who judge
things without biases, an assumption which is however the cornerstone
of rational behavior as maximization of a utility function. Human
judgements involve both some observable objects and the subject
himself, who is looking at the objects with his specific values, in a
manner that can be specific to the situation at hand. It is as if the subject
constructs his preferences by positioning himself towards the objects he
judges. These models of the biased balance should help to better reflect
how such attitudes influence preferences. At last, it could also provide a

measurement theoretic approach for studies that combine observation
of behavior with observation of the human brain [6].
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